Page - 130 - in Joint Austrian Computer Vision and Robotics Workshop 2020
Image of the Page - 130 -
Text of the Page - 130 -
References
[1] A. Bicchi and V. Kumar. Robotic grasping and con-
tact: Areview. In2000InternationalConferenceon
Robotics and Automation (ICRA), volume 1, pages
348β353. IEEE,2000.
[2] J.Bohg,A.Morales,T.Asfour,andD.Kragic. Data-
driven grasp synthesisβa survey. IEEE Transac-
tionsonRobotics, 30(2):289β309,2013.
[3] S.Caldera,A.Rassau, andD.Chai. Reviewofdeep
learning methods in robotic grasp detection. Multi-
modalTechnologiesand Interaction, 2(3):57,2018.
[4] F.-J. Chu, R. Xu, and P. A. Vela. Real-world mul-
tiobject, multigrasp detection. IEEE Robotics and
AutomationLetters, 3(4):3355β3362,2018.
[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition
(CVPR), pages248β255,2009.
[6] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
ternRecognition (CVPR), pages 770β778,2016.
[7] S. Kumra and C. Kanan. Robotic grasp detection
using deep convolutional neural networks. In 2017
IEEE/RSJ International Conference on Intelligent
RobotsandSystems (IROS), pages769β776,2017.
[8] T.-C. Lee, R. L. Kashyap, and C.-N. Chu. Building
skeletonmodelsvia3-dmedialsurfaceaxis thinning
algorithms. CVGIP: Graphical Models and Image
Processing, 56(6):462β478,1994.
[9] I. Lenz, H. Lee, and A. Saxena. Deep learning for
detecting robotic grasps. The International Journal
ofRoboticsResearch, 34(4-5):705β724, 2015.
[10] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and
D. Quillen. Learning hand-eye coordination for
robotic grasping with deep learning and large-
scale data collection. The International Journal of
RoboticsResearch, 37(4-5):421β436,2018.
[11] K.-K. Maninis, S. Caelles, J. Pont-Tuset, and
L. Van Gool. Deep extreme cut: From extreme
points toobject segmentation. InProceedingsof the
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 616β625,2018.
[12] L.PintoandA.Gupta. Supersizingself-supervision:
Learning to grasp from 50k tries and 700 robot
hours. In 2016 International Conference on
RoboticsandAutomation(ICRA),pages3406β3413.
IEEE,2016.
[13] J.RedmonandA.Angelova. Real-timegraspdetec-
tion using convolutional neural networks. In 2015
International Conference on Robotics and Automa-
tion (ICRA), pages 1316β1322. IEEE,2015. [14] S.Ren,K.He,R.Girshick, andJ.Sun. Faster r-cnn:
Towards real-time object detection with region pro-
posal networks. In Advances in neural information
processing systems, pages 91β99,2015.
[15] C. Rother, V. Kolmogorov, and A. Blake. β grab-
cutβ interactive foreground extraction using iterated
graph cuts. ACM transactions on graphics (TOG),
23(3):309β314,2004.
[16] A. Saxena, J. Driemeyer, and A. Y. Ng. Robotic
grasping of novel objects using vision. The Interna-
tionalJournalofRoboticsResearch,27(2):157β173,
2008.
[17] M. Suchi, T. Patten, D. Fischinger, and M. Vincze.
Easylabel: A semi-automatic pixel-wise object an-
notation tool for creating robotic rgb-d datasets. In
2019 International Conference on Robotics and Au-
tomation (ICRA), pages6678β6684. IEEE,2019.
[18] A.Zeng,S.Song,K.-T.Yu,E.Donlon,F.R.Hogan,
M. Bauza, D. Ma, O. Taylor, M. Liu, E. Romo,
etal.Roboticpick-and-placeofnovelobjectsinclut-
terwithmulti-affordancegraspingandcross-domain
image matching. In 2018 International Conference
on Robotics and Automation (ICRA), pages 1β8.
IEEE,2018.
[19] A. Zeng, K.-T. Yu, S. Song, D. Suo, E. Walker,
A. Rodriguez, and J. Xiao. Multi-view self-
supervised deep learning for 6d pose estimation in
theamazonpickingchallenge. In2017International
Conference on Robotics and Automation (ICRA),
pages 1386β1383. IEEE,2017.
[20] X. Zhou, X. Lan, H. Zhang, Z. Tian, Y. Zhang, and
N. Zheng. Fully convolutional grasp detection net-
work with oriented anchor box. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages7223β7230,2018.
130
Joint Austrian Computer Vision and Robotics Workshop 2020
- Title
- Joint Austrian Computer Vision and Robotics Workshop 2020
- Editor
- Graz University of Technology
- Location
- Graz
- Date
- 2020
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-85125-752-6
- Size
- 21.0 x 29.7 cm
- Pages
- 188
- Categories
- Informatik
- Technik