Page - 165 - in Joint Austrian Computer Vision and Robotics Workshop 2020
Image of the Page - 165 -
Text of the Page - 165 -
Feature Bagging (FB)
1 2 3 4 5 6 7
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
73 1
7 19
Recall = 0.73 Precision = 0.95
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0 auROC = 0.96 auPR = 0.93
ROC
PR
5-Nearest Neighbors (KNN)
0 2 4 6 8 10
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
74 0
6 20
Recall = 0.77 Precision = 1.00
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0 auROC = 0.97 auPR = 0.94
ROC
PR
Local Outlier Factor (LOF)
1 2 3 4 5 6 7
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
72 2
9 17
Recall = 0.65 Precision = 0.89
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0 auROC = 0.96 auPR = 0.91
ROC
PR
Minimum Covariance Determinant (MCD)
0 50 100 150 200
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
72 2
12 14
Recall = 0.54 Precision = 0.88
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0 auROC = 0.95 auPR = 0.87
ROC
PR
One-class SVM (OCSVM)
0 1 2 3 4 5
increasing outlier scores
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
72 2
4 22
Recall = 0.85 Precision = 0.92
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0 auROC = 0.88 auPR = 0.89
ROC
PR
Figure 4: Selected outlier detectors and their performance on test set, i.e., the segmentation results of the
algorithm.
165
Joint Austrian Computer Vision and Robotics Workshop 2020
- Title
- Joint Austrian Computer Vision and Robotics Workshop 2020
- Editor
- Graz University of Technology
- Location
- Graz
- Date
- 2020
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-85125-752-6
- Size
- 21.0 x 29.7 cm
- Pages
- 188
- Categories
- Informatik
- Technik