Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Joint Austrian Computer Vision and Robotics Workshop 2020
Page - 171 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 171 - in Joint Austrian Computer Vision and Robotics Workshop 2020

Image of the Page - 171 -

Image of the Page - 171 - in Joint Austrian Computer Vision and Robotics Workshop 2020

Text of the Page - 171 -

lage attack (CA). For the patch-size chosen in the comparison, the imagequality isslightlysuperior for CA. GS and GS+LS as also proposed in literature areneithercompetitive in termsofmaintained image quality nor in terms of preventing the copy move at- tack detection capability. When considering the ease of application, LS is clearly preferable, as CA re- quires the generation of a keypoint-free dictionary and a vector-quantisation like patch selection pro- cess,whileLSonlyappliesa localGaussiansmooth- ing. Overall, LS turns out to be a highly attractive alternative to SIFT keypoint removal techniques ap- plied so far in literature. References [1] I. Amerini, M. Barni, R. Caldelli, and A. Costanzo. Counter-forensicsofsift-basedcopy-movedetection bymeansofkeypointclassification. EURASIPJour- nal on Image and Video Processing, 2013(1):18, 2013. [2] I. Amerini, M. Barni, R. Caldelli, and A. Costanzo. Removal and injection of keypoints for sift-based copy-move counter-forensics. EURASIP Journal on InformationSecurity, 2013(1):8, 2013. [3] I. Amerini, F. Battisti, R. Caldelli, M. Carli, and A. Costanzo. Exploiting perceptual quality is- sues in countering sift-based forensic methods. In 2014 IEEE International Conference on Acous- tics, Speech and Signal Processing (ICASSP), pages 2664–2668. IEEE,2014. [4] E. Ardizzone, A. Bruno, and G. Mazzola. Detect- ing multiple copies in tampered images. In 2010 IEEE International Conference on Image Process- ing, pages2117–2120. IEEE,2010. [5] E. Ardizzone, A. Bruno, and G. Mazzola. Copy– move forgery detection by matching triangles of keypoints. IEEE Transactions on Information ForensicsandSecurity, 10(10):2084–2094,2015. [6] V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou. An evaluation of popular copy- move forgery detection approaches. IEEE Trans- actions on Information Forensics and Security, 7(6):1841–1854,2012. [7] A. Costanzo, I. Amerini, R. Caldelli, and M. Barni. Forensicanalysisof siftkeypoint removaland injec- tion. IEEE Transactions on Information Forensics andSecurity, 9(9):1450–1464,2014. [8] D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G.Boato. Raise: arawimagesdataset fordigital im- age forensics. In Proceedings of the 6th ACM Mul- timedia Systems Conference, pages 219–224. ACM, 2015. [9] T.-T. Do, E. Kijak, T. Furon, and L. Amsaleg. De- luding image recognition in sift-based cbir systems. In Proceedings of the 2nd ACM workshop on Multi- media in forensics, security and intelligence, pages 7–12.ACM,2010. [10] C.-Y.Hsu,C.-S.Lu,andS.-C.Pei.Secureandrobust sift. In Proceedings of the 17th ACM International Conference on Multimedia, pages 637–640. ACM, 2009. [11] H.Huang,W.Guo,andY.Zhang.Detectionofcopy- move forgery in digital images using sift algorithm. In Pacific-Asia Workshop on Computational Intelli- genceandIndustrialApplication,2008.PACIIA’08., volume2, pages 272–276. IEEE, 2008. [12] D. G. Lowe. Distinctive image features from scale- invariant keypoints. International Journal of Com- puterVision, 60(2):91–110,November2004. [13] B. Mahdian and S. Saic. Detection of copy–move forgeryusingamethodbasedonblurmomentinvari- ants. Forensic Science International, 171(2-3):180– 189,2007. [14] MATLAB. version 8.3.0.532 (R2014a). The Math- Works Inc.,Natick, Massachusetts, 2014. [15] M.MuX. MeTriXMuXversion1.1. 2014. [16] J. Platt et al. Probabilistic outputs for support vec- tor machines and comparisons to regularized likeli- hood methods. Advances in Large Margin Classi- fiers, 10(3):61–74,1999. [17] M. Saleem. A key-point based robust algorithm for detecting cloning forgery. In IEEE International Conference on Control System, Computing and En- gineering (ICCSCE), volume 4, pages 2775–2779, 2014. [18] G. Schäfer and M. Stich. UCID - an uncompressed colour image database. Proc. SPICE. Storage and RetrievalMethodsandApplications forMultimedia, 11(1):472–480,2004. [19] H. Sencar and N. M. (Eds.). Digital Image Foren- sics: There is more to a picture than meets the eye. SpringerVerlag, 2012. [20] A. Vedaldi and B. Fulkerson. Vlfeat: An open and portable library of computer vision algorithms. In Proceedings of the 18th ACM International Confer- ence on Multimedia, MM ’10, pages 1469–1472, NewYork,NY, USA,2010.ACM. [21] M. Zandi, A. Mahmoudi-Aznaveh, and A. Man- souri. Adaptivematchingforcopy-moveforgeryde- tection. In 2014 IEEE International Workshop on Information Forensics and Security (WIFS), pages 119–124. IEEE,2014. [22] D. Zhang and G. Lu. Evaluation of similarity mea- surement for image retrieval. In International Con- ference on Neural Networks and Signal Processing, 2003. Proceedings of the 2003, volume 2, pages 928–931. IEEE,2003. 171
back to the  book Joint Austrian Computer Vision and Robotics Workshop 2020"
Joint Austrian Computer Vision and Robotics Workshop 2020
Title
Joint Austrian Computer Vision and Robotics Workshop 2020
Editor
Graz University of Technology
Location
Graz
Date
2020
Language
English
License
CC BY 4.0
ISBN
978-3-85125-752-6
Size
21.0 x 29.7 cm
Pages
188
Categories
Informatik
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Joint Austrian Computer Vision and Robotics Workshop 2020