Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Photovoltaic Materials and Electronic Devices
Page - 82 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 82 - in Photovoltaic Materials and Electronic Devices

Image of the Page - 82 -

Image of the Page - 82 - in Photovoltaic Materials and Electronic Devices

Text of the Page - 82 -

in that it decreases with increasing R. Increased atomic hydrogen present in the plasmaresultingfromthe increase inhydrogendilutionmayetchweaklybonded material, leadingto theremovalofpotentiallydefect-richmaterialandslowingthe depositionrate. Thesedepositionrateswere laterused inVIAofRTSEdatacollected for films nucleating crystallites. A schematic diagram showing a single junction n-i-p devicewithRoptimizedfor the intendedthicknessesofeacha-Si:Hlayer is shown inFigure8. R  =  200,  the  a (a+nc)  transition  occurs  at  a  bulk  thickness  of  40  Å,  and  the  (a+nc) nc  transition  occurs  within  200  Å.  The  p‐layer  should  be  deposited  at  the  maximum  R  that  can  be  sustained  without  crossing  the  a (a+nc)  transition  boundary  throughout  the  desired  thickness  of  100–150  Å  here.  This  p‐layer  growth  evolution  diagram  is  comparable  to  previously  published  diagrams  [11,12,63,64].    The  slope  of  db,  r(t)  =  d(db(t))/dt,  was  used  to  determine  the  deposition  rate  of  each  film  even  though  ε  for  films  containing  anocrystallites  are  not  accurate  due  to  phase  evolution  with  thickness.  Figure  7  shows  variations  in  growth  rate  as  functions  of  R  for  n‐,  i‐,  and  p‐layers.  The  deposition  rate  shows  a  familiar  trend  in  that  it  decreases  with  increasing  R.  Increased  atomic  hydrogen  present  in  the  plasma  resulting  from  the  increase  in  hydrogen  dilution  may  etch  weakly  bonded  material,  leading  to  the  removal  of  potentially  defect‐rich  material  and  slowing  the  deposition  rate.  These  deposition  rates  were  later  used  in  VIA  of  RTSE  data  collected  for  films  nucleating  crystallites.  A  schematic  diagram  showing  a  single  junction  n‐i‐p  device  with  R  optimized  for  the  intended  thicknesses  of  each  a‐Si:H  layer  is  shown  in  Figure  8.    (a)  (b) Figure  7.  Cont.  Materials  2016,  9,  128  15  of  23    (c)  Figure  7.  Deposition  rates  of  (a)  n‐,  (b)  i‐,  and  (c)  p‐layers  on  ZnO/Ag,  n‐layer/ZnO/Ag,  and  i‐layer/glass,  respectively,  as  functions  of  R.    Figure  8.  Schematic  of  a  single  junction  a‐Si:H  based  solar  cell  prepared  in  the  n‐i‐p  configuration.  Each  amorphous  or  protocrystalline  Si:H  layer  is  optimized  to  a  value  of  R  with  an  intended  thickness.  3.3.  Ex  situ  SE  Study  of  a‐Si:H  in  n‐i‐p  Configuration  Solar  Cells  from  the  Mid‐IR  to  Near  UV Figure 7. Deposition rates of (a) n-, (b) i-, and (c) p-layers on ZnO/Ag, n-layer/ZnO/Ag,and i-layer/glass, respectively,as functions ofR. 82
back to the  book Photovoltaic Materials and Electronic Devices"
Photovoltaic Materials and Electronic Devices
Title
Photovoltaic Materials and Electronic Devices
Author
Joshua M. Pearce
Editor
MDPI
Location
Basel
Date
2016
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-217-4
Size
17.0 x 24.4 cm
Pages
216
Keywords
Perovskite, Plasmonics, Nanostructured Materials, Anti-Reflection Coatings, Transparent Conductive Oxides, Amorphous Silicon, Dye-sensitized Solar Cells (DSSCs) Materials, Organic Photovoltaic Materials, Solar Energy Materials
Categories
Naturwissenschaften Physik
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Photovoltaic Materials and Electronic Devices