Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Photovoltaic Materials and Electronic Devices
Page - 135 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 135 - in Photovoltaic Materials and Electronic Devices

Image of the Page - 135 -

Image of the Page - 135 - in Photovoltaic Materials and Electronic Devices

Text of the Page - 135 -

the binding energy of electrons in Ti 2p chemical states. Similar results have been observedin theheterojunctionsofp-MoO3 nanosheets/n-TiO2 nanofibers [26]. Materials  2016,  9,  90  5  of  12    Figure  4.  (a)  XPS  spectra  of  Bi  4f;  (b)  I  3d;  and  (c)  O  1s  for  BiOI/TiO2‐C30;  (d)  XPS  spectra  of  Ti  2p  for  TiO2  nanofibers  (bottom)  and  BiOI/TiO2‐C30  (top).  2.4.  Nitrogen  Adsorption  All  the  samples  have  typical  type‐IV  N2  adsorption‐desorption  isotherms  with  H1  hysteresis  indicative  of  mesoporous  structure  (Figure  5).  The  curve  of  pure  TiO2  nanofibers  implies  a    meso‐  and  macropore  structure.  As  we  know,  the  precursor  nanofibers  of  electrospun  TiO2  nanofibers  consist  of  polymer  and  metal  salt.  During  the  calcination  process,  the  decomposition  of  the  polymer  and  metal  salt  can  result  in  abundant  hierarchical  pores  with  a  wide  pore  size  distribution  of  more  than  2  nm,  as  shown  in  Figure  5  inset.  For  BiOI/TiO2‐C10,  there  is  an  obvious  hysteresis  loop  in  the  large  relative  pressure  range  of  0.9–1.0  (P/P0),  indicating  the  relatively  large  pore  structure  arising  from  the  voids  among  the  BiOI  nanosheets  on  TiO2  nanofibers.  The  specific  surface  areas  of  these  samples  are  shown  in  Table  1.  It  is  also  worth  noting  that  the  BiOI/TiO2‐C10  exhibit  lower  specific  surface  areas  than  that  of  TiO2  nanofibers,  which  can  be  ascribed  to  the  deposition  of  BiOI  nanosheets  blocking  the  original  pores  on  TiO2.  It  can  be  clearly  seen  that  the  relative  small  pores  (2–11  nm)  are  disappeared,  which  can  be  demonstrated  by  the  pore  size  distribution  of  BiOI/TiO2‐C10  in  Figure  5  inset.  Compared  to  BiOI/TiO2‐C10,  there  is  an  obviously  increased  adsorption  at  high  pressure  with  increased  deposition  of  BiOI  nanosheets  on  TiO2  nanofibers  for  BiOI/TiO2‐C20  and  BiOI/TiO2‐C30,  along  with  increased  specific  surface  areas,  indicating  the  more  and  more  abundant  porosity  structures.  It  is  accepted  that  the  porosity  is  relative  to  the  amount  of  BiOI  nanosheets  depositing  on  TiO2  nanofibers.  Hence,  the  close  arrangements  of  BiOI  nanosheets  on  TiO2  nanofibers  (see  SEM  and  TEM  images)  have  resulted  in  the  hierarchical  porosity  with  wide  pore  size  distributions,  which  are  further  confirmed  by  the  corresponding  pore  size  distributions  in  the  inset  of  Figure  5.  These  results  suggest  that  the  BiOI/TiO2  nanofibers  with  abundant  porosity  and  large  specific  surface  areas  will  increase  the  assessable  surface  areas  of  the  catalyst  with  dye  solution  to  achieve  good  photocatalytic  activity.  Particularly,  the  large  amount  of  BiOI  nanosheets  depositing  on  TiO2  nanofibers  without  independent  nucleation  will  benefit  the  formation  of  more  p‐n  heterojunctions  as  well  as  rapid  charge  transfer  during  the  photocatalysis.  Figure4. (a) XPSspectra of Bi4f; (b) I3d; and (c) O1s for BiOI/TiO2-C30; (d) XPS spectraofTi2pforTiO2 nanofibers (bottom)andBiOI/TiO2-C30(top). 2.4. NitrogenAdsorption All the samples have typical type-IV N2 adsorption-desorption isotherms with H1hysteresis in icativeofmesoporousstructure (Figure5). ThecurveofpureTiO2 nanofibers implies a meso- nd macropor structure. As we know, the prec rsor nanofibers of electrospun TiO2 nanofibers consist of polymer and metal salt. During thecalcinationprocess, thedecompositionof thepolymera dmetal salt canresult in abundant hierarchical por s with a wide pore size distribution of more t an 2 nm, as shown in Figure 5 inset. For BiOI/TiO2-C10, there is an obvious hysteresis loopinthe largerelativepressurera geof0.9–1.0 (P/P0), indicatingtherelatively large por structure rising from the voids among the BiOI na sh ets on TiO2 nanofibers. The specific surface areas of these samples are shown in Table 1. It is alsoworthnotingthat theBiOI/TiO2-C10exhibit lowerspecificsurfaceareas than thatofTiO2 anofibers,whichcanbe scribedto thedepositionofBiOInanosheets blocking the original pores on TiO2. It can be clearly seen that the relative small pores (2–11 nm) are disappeared, which can be demonstrated by the pore size distributionofBiOI/TiO2-C10 inFigure5 inset. C mparedtoBiOI/TiO2-C10, there 135
back to the  book Photovoltaic Materials and Electronic Devices"
Photovoltaic Materials and Electronic Devices
Title
Photovoltaic Materials and Electronic Devices
Author
Joshua M. Pearce
Editor
MDPI
Location
Basel
Date
2016
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-217-4
Size
17.0 x 24.4 cm
Pages
216
Keywords
Perovskite, Plasmonics, Nanostructured Materials, Anti-Reflection Coatings, Transparent Conductive Oxides, Amorphous Silicon, Dye-sensitized Solar Cells (DSSCs) Materials, Organic Photovoltaic Materials, Solar Energy Materials
Categories
Naturwissenschaften Physik
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Photovoltaic Materials and Electronic Devices