Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
International
Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Page - 38 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 38 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“

Image of the Page - 38 -

Image of the Page - 38 - in Proceedings - OAGM & ARW Joint Workshop 2016 on

Text of the Page - 38 -

Input image Convolution Convolution Max- pooling Convolution Convolution Fully connected layer NN Max- pooling 32 feature maps NN 32 feature maps NN 22 NN  32 feature maps 44 NN  64 feature maps 22 NN  64 feature maps 22 NN  64 feature maps 256 neurons 2 output neurons Figure1: The architectureof theproposedConvNetmodel. Figure2: Examplesofannotated tattoo images. eighth layer consists of two neurons with the Softmax activation function, corresponding to the two output classes. Dropout, with thedropout ratio set to0.5, is applied to the fullyconnected layer. We implemented thedescribed network inPython,usingTheano [2,3] andKeras 2 libraries. 4. Experiments Given the relatively modest volume of work on tattoo detection, there are no readily available tattoo detection datasets. Recently, a dataset called Tatt-C has been published [19], but it cannot be freely downloaded. Hence, to facilitate the development and testing of our method we have assembled our owndataset3 bycollectingandmanually labeling890tattooimagesfromtheImageNetdatabase[22]. Each of the collected images contains one or more tattoos. We annotated each tattoo using a series of connected line segments. Example annotated images from our dataset are shown in Fig. 2. We attempted tocloselycapture theoutlineofeach tattoo,whichcanbeachallenging task,as tattooscan havehighly irregular edges. 2https://github.com/fchollet/keras, accessed March 2016. 3The dataset is availableat http://www.fer.unizg.hr/demsi/databases and code/tattoo dataset. 38
back to the  book Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“"
Proceedings OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Title
Proceedings
Subtitle
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Authors
Peter M. Roth
Kurt Niel
Publisher
Verlag der Technischen Universität Graz
Location
Wels
Date
2017
Language
English
License
CC BY 4.0
ISBN
978-3-85125-527-0
Size
21.0 x 29.7 cm
Pages
248
Keywords
Tagungsband
Categories
International
Tagungsbände

Table of contents

  1. Learning / Recognition 24
  2. Signal & Image Processing / Filters 43
  3. Geometry / Sensor Fusion 45
  4. Tracking / Detection 85
  5. Vision for Robotics I 95
  6. Vision for Robotics II 127
  7. Poster OAGM & ARW 167
  8. Task Planning 191
  9. Robotic Arm 207
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Proceedings