Page - 60 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Image of the Page - 60 -
Text of the Page - 60 -
[4] D.KrishnanandR.Fergus. Fast imagedeconvolutionusinghyper-Laplacianpriors. InAdvances
inNeural InformationProcessingSystems, pages1033–1041,2009.
[5] G. Liu, S. Chang, and Y. Ma. Blind image deblurring using spectral properties of convolution
operators. IEEE Transactionson ImageProcessing, 23(12):5047–5056,2014.
[6] L.B.Lucy. Aniterative technique for the rectificationofobserveddistributions. TheAstronom-
ical Journal, 79(6):745–754, June1974.
[7] P. Moser. Blind image deblurring using the deconvolution operator’s spectral properties and
non-linear kernel estimation. Master’s thesis,UMIT,Hall/Tyrol,Austria, 2015.
[8] N. Persch, A. Elhayek, M. Welk, A. Bruhn, S. Grewenig, K. Bo¨se, A. Kraegeloh, and J. We-
ickert. Enhancing 3-D cell structures in confocal and STED microscopy: a joint model for
interpolation, deblurring and anisotropic smoothing. Measurement Science and Technology,
24(12):125703, 2013.
[9] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. T. Flannery. Numerical Recipes. The Art
of ScientificComputing. ThirdEdition. CambridgeUniversityPress,Cambridge,2007.
[10] W.H.Richardson. Bayesian-based iterativemethodof imagerestoration. Journalof theOptical
SocietyofAmerica, 62(1):55–59, 1972.
[11] K. Schelten, S. Nowozin, J. Jancsary, C. Rother, and S. Roth. Interleaved regression tree field
cascades for blind image deconvolution. In IEEE Winter Conference on Applications of Com-
puterVision, pages494–501, 2015.
[12] C. J. Schuler, H. C. Burger, S. Harmeling, and B. Scho¨lkopf. A machine learning approach for
non-blind imagedeconvolution. In IEEEConferenceonComputerVisionandPatternRecogni-
tion (CVPR), pages 1067–1074, 2013.
[13] M.Welk. Arobustvariationalmodel forpositive imagedeconvolution. Signal, ImageandVideo
Processing, 10(2):369–378, 2016.
[14] M.Welk,P.Raudaschl,T.Schwarzbauer,M.Erler, andM.La¨uter. Fastandrobust linearmotion
deblurring. Signal, ImageandVideoProcessing, 9(5):1221–1234,2015.
[15] N. Wiener. Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engi-
neeringApplications. MITPress, Cambridge,MA,1949.
[16] L. Xu and J. Jia. Two-phase kernel estimation for robust motion deblurring. In K. Daniilidis,
P. Maragos, and N. Paragios, editors, Computer Vision – ECCV 2010, Part I, volume 6311 of
LectureNotes in ComputerScience, pages157–170.Springer,Berlin, 2010.
[17] L.Xu,J.SJ.Ren,C.Liu,andJ.Jia. Deepconvolutionalneuralnetworkfor imagedeconvolution.
InAdvances inNeural Information ProcessingSystems, pages1790–1798,2014.
[18] Y.-L.YouandM.Kaveh. Anisotropicblindimagerestoration. InProc.1996IEEEInternational
ConferenceonImageProcessing, volume2,pages461–464,Lausanne,Switzerland,September
1996.
[19] M. E. Zervakis, A. K. Katsaggelos, and T. M. Kwon. A class of robust entropic functionals for
image restoration. IEEE Transactionson ImageProcessing, 4(6):752–773, June1995.
60
Proceedings
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Title
- Proceedings
- Subtitle
- OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Authors
- Peter M. Roth
- Kurt Niel
- Publisher
- Verlag der Technischen Universität Graz
- Location
- Wels
- Date
- 2017
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-85125-527-0
- Size
- 21.0 x 29.7 cm
- Pages
- 248
- Keywords
- Tagungsband
- Categories
- International
- Tagungsbände