Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
International
Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Page - 103 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 103 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“

Image of the Page - 103 -

Image of the Page - 103 - in Proceedings - OAGM & ARW Joint Workshop 2016 on

Text of the Page - 103 -

Evaluation. The evaluation aims at comparing our approach against the particle filter based approaches [5][18][9] and online learning based approach [20] in estimating the translation (in x, y, and z axis) and rotation (roll, pitch and yaw) parameters. We compute the root mean square (RMS) errors (translation, rotation) and average time per frame. Table I shows our approach outperforms [5] and [18] over all sequences. Unlike [5] our approach only uses depth data for 3D tracking. It also performs better than [9] on average of about 0.31 mm and 1.16 deg in estimating the translation and rotation parameters respectively. Our approach requires much less computational time (1.7 ms per frame) when compared with [9] (131 ms). Though our approach performs on par with [20] in terms of run-time, it performs better in estimating the translation (by 0.31 mm) and rotation parameters (by 0.15 deg) on average. TABLE I. COMPARISION OF OUR APPROACH WITH THE STATE OF ART AGAINST THE RMS ERRORS IN TRANSLATION (IN MM), ROTATION (DEGREES) AND THE RUNTIME (MS) PCL [18]1 Choi [5]2 Krull [9]3 Tan [20]4 Ours5 Transl. (x) 13.38 0.93 0.51 1.23 0.63 Transl. (y) 31.45 1.94 1.27 0.74 1.19 Transl. (z) 26.09 1.09 0.62 0.24 0.48 Roll 59.37 3.83 2.19 0.50 0.19 Pitch 19.58 1.41 1.44 0.28 0.28 Yaw 75.03 3.26 1.90 0.46 0.27 Time 2205 134 135 1.5 1.7 Transl. (x) 2.53 0.96 0.52 1.10 0.39 Transl. (y) 2.20 1.44 0.74 0.94 0.37 Transl. (z) 1.91 1.17 0.63 0.18 0.37 Roll 85.81 1.32 1.28 0.35 0.12 Pitch 42.12 0.75 1.08 0.24 0.17 Yaw 46.37 1.39 1.20 0.37 0.15 Time 1637 117 129 1.5 1.69 Transl. (x) 1.46 0.83 0.69 0.73 0.42 Transl. (y) 2.25 1.37 0.81 0.56 0.51 Transl. (z) 0.92 1.20 0.81 0.24 0.64 Roll 5.15 1.78 2.10 0.31 0.22 Pitch 2.13 1.09 1.38 0.25 0.29 Yaw 2.98 1.13 1.27 0.34 0.30 Time 2762 111 116 1.5 1.7 Transl. (x) 43.99 1.84 0.83 1.54 0.30 Transl. (y) 42.51 2.23 1.67 1.90 0.49 Transl. (z) 55.89 1.36 0.79 0.34 0.31 Roll 7.62 6.41 1.11 0.42 0.21 Pitch 1.87 0.76 0.55 0.22 0.27 Yaw 8.31 6.32 1.04 0.68 0.23 Time 4539 166 143 1.5 1.71 Transl. 18.72 1.36 0.82 0.81 0.50 Rot. 29.70 2.45 1.38 0.37 0.22 Time 2786 132 131 1.5 1.7 1,2 Intel Core2 Quad CPU Q9300, 8G RAM with Nvidia GTX 590 GPU; 3 Intel(R) Core(TM) i7 CPU with a Nvidia GTX 550 TI GPU; 4 Intel(R) Core(TM) i7 CPU; 5 Intel(R) Core(TM) i5 CPU 6. Conclusion We have presented a framework for combining object tracking and object localization to provide robust tracking performance in a challenging scenario. A quantitative analysis of the evaluation on popular test data set is also presented. The evaluation shows that our approach performs better than the state of art in terms of estimating the translation and rotation parameters. The approach is 103
back to the  book Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“"
Proceedings OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Title
Proceedings
Subtitle
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Authors
Peter M. Roth
Kurt Niel
Publisher
Verlag der Technischen Universität Graz
Location
Wels
Date
2017
Language
English
License
CC BY 4.0
ISBN
978-3-85125-527-0
Size
21.0 x 29.7 cm
Pages
248
Keywords
Tagungsband
Categories
International
Tagungsbände

Table of contents

  1. Learning / Recognition 24
  2. Signal & Image Processing / Filters 43
  3. Geometry / Sensor Fusion 45
  4. Tracking / Detection 85
  5. Vision for Robotics I 95
  6. Vision for Robotics II 127
  7. Poster OAGM & ARW 167
  8. Task Planning 191
  9. Robotic Arm 207
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Proceedings