Page - 114 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Image of the Page - 114 -
Text of the Page - 114 -
both SIMD architectures have totally different instructions when it comes to data reordering. The
most powerful data rearrange instructions of NEON are VTBL and VTBX. One the one hand, they are
expensive in terms of execution cycles. On the other hand, several cases can be replaced by faster
instructions. For example, the vector shift can be achieved using the NEON instruction VEXT and a
register containing zero; broadcasting a single element can be done with VDUP. The newest ARM
instruction set named ARMv8 should allow further performance optimizations by adding cross-lane
instructions providing functionality exactly needed by discrepancy norm calculation like horizontal
summation and taking minimum or maximum [24]. Though, it is impossible to estimate the achiev-
able speedupwithoutpractical tests.
5. Conclusion
WeanalyzedavariantofanimagesimilaritymeasurebasedonHermannWeyl’sdiscrepancyfromthe
point of view of efficient implementation by exploiting redundancies in computing multiple integral
images. Finally,weproposedan implementationbasedonvectorizationofprefixsumsandsummed-
area tableswhichresults inaspeed-upfactor16compared toastandard integral imagebasedcompu-
tation. Future research is left for checking parallelization and implementation optimizations also of
othervariantsof Weyl’s discrepancy.
References
[1] B.A.Moser,“AsimilaritymeasureforimageandvolumetricdatabasedonHermannWeyl’sdis-
crepancy.,” IEEETransactionsonPatternAnalysisandMachineIntelligence, vol.33,pp.2321–
9,nov2011.
[2] B. Moser, G. Stu¨bl, and J.-L. Bouchot, “On a non-monotonicity effect of similarity measures.,”
in SIMBAD (M. Pelillo and E. R. Hancock, eds.), vol. 7005 of Lecture Notes in Computer Sci-
ence, pp.46–60, Springer, 2011.
[3] H. Weyl, “U¨ber die Gleichverteilung von Zahlen mod. Eins,” Mathematische Annalen, vol. 77,
pp.313–352, Sept1916.
[4] B.Chazelle,Thediscrepancymethod: randomnessandcomplexity.CambridgeUniversityPress,
2000.
[5] B.A.MoserandT.Natschlager, “Onstabilityofdistancemeasures forevent sequences induced
bylevel-crossingsampling,”SignalProcessing, IEEETransactionson, vol.62,no.8,pp.1987–
1999,2014.
[6] B.A.Moser,“Stabilityof threshold-basedsamplingasmetricproblem,”inEvent-basedControl,
Communication,andSignalProcessing(EBCCSP),2015InternationalConferenceon, pp.1–8,
IEEE,2015.
[7] B. A. Moser, “The range of a simple random walk onZ: An elementary combinatorial ap-
proach,” TheElectronicJournalof Combinatorics, vol. 21,no.4,pp.P4–10,2014.
[8] J.-L.Bouchot,G.Stu¨bl, andB.Moser,“Atemplatematchingapproachbasedonthediscrepancy
norm for defect detection on regularly textured surfaces,” in 10th International Conference on
Quality Control by Artificial Vision, pp. 80000K–80000K, International Society for Optics and
Photonics, 2011.
114
Proceedings
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Title
- Proceedings
- Subtitle
- OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Authors
- Peter M. Roth
- Kurt Niel
- Publisher
- Verlag der Technischen Universität Graz
- Location
- Wels
- Date
- 2017
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-85125-527-0
- Size
- 21.0 x 29.7 cm
- Pages
- 248
- Keywords
- Tagungsband
- Categories
- International
- Tagungsbände