Page - 133 - in Proceedings of the OAGM&ARW Joint Workshop - Vision, Automation and Robotics
Image of the Page - 133 -
Text of the Page - 133 -
Fig. 8. Reconstructed surface from nadir aerial imagery. The depicted surface shows the Frauenkirche in Munich, located in the west part of the test
area. Therefore, west-facing facades cannot be reconstructed.
this fusion concept can be easily put into state-of-the-art
mapping pipelines, is able to handle large point clouds due
to the tiling concept and can be applied for terrestrial, aerial
or satellite based mapping application.
ACKNOWLEDGMENT
This research was partly funded by BMVIT/BMWFW
under COMET programme, project nr. 836630, by Land
Steiermark through SFG under project nr. 1000033937, and
by the Vienna Business Agency.
The authors would like to thank Stefan Cavegn and Norbert
Haala for providing the terrestrial laser scanner reference
data.
REFERENCES
[1] A. H. Ahmadabadian, S. Robson, J. Boehm, M. Shortis, K. Wenzel,
and D. Fritsch, “A comparison of dense matching algorithms for
scaled surface reconstruction using stereo camera rigs,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 78, pp. 157 –
167, 2013. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0924271613000452
[2] S. Cavegn, N. Haala, S. Nebiker, M. Rothermel, and P. Tutzauer,
“Benchmarking High Density Image Matching for Oblique Airborne
Imagery,” ISPRS International Archives of the Photogrammetry, Re-
moteSensingandSpatial InformationSciences, pp. 45–52, Aug. 2014.
[3] S. Fuhrmann and M. Goesele, “Fusion of depth maps with multiple
scales,” ACM Trans. Graph., vol. 30, no. 6, pp. 148:1–148:8,
Dec. 2011. [Online]. Available: http://doi.acm.org/10.1145/2070781.
2024182
[4] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multiview
stereopsis,” IEEETransactionsonPatternAnalysis andMachine Intel-
ligence, vol. 32, no. 8, pp. 1362–1376, Aug 2010.
[5] S. Galliani, K. Lasinger, and K. Schindler, “Massively parallel mul-
tiview stereopsis by surface normal diffusion,” in IEEE International
ConferenceonComputerVision (ICCV), June 2015.
[6] H. Hirschmu¨ller, “Stereo processing by semiglobal matching and mu-
tual information,” IEEETransactionsonPatternAnalysisandMachine
Intelligence, vol. 30, no. 2, pp. 328–341, Feb 2008.
[7] M. Isenburg, “Laszip,” Photogrammetric Engineering and Remote
Sensing, vol. 79, no. 2, pp. 209–217, 2013. [8] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruction,”
ACM Trans. Graph., vol. 32, no. 3, pp. 29:1–29:13, July 2013.
[Online]. Available: http://doi.acm.org/10.1145/2487228.2487237
[9] A. Kuhn, H. Huang, M. Drauschke, and H. Mayer, “Fast probabilistic
fusion of 3d point clouds via occupancy grids for scene classification,”
ISPRS Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. III-3, pp. 325–332, 2016. [Online]. Avail-
able: http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.
net/III-3/325/2016/
[10] A. Kuhn and H. Mayer, “Incremental division of very large point
clouds for scalable 3d surface reconstruction,” in 2015 IEEEInterna-
tionalConferenceonComputerVisionWorkshop(ICCVW), Dec 2015,
pp. 157–165.
[11] A. Kuhn, H. Hirschmu¨ller, and H. Mayer, Multi-Resolution
Range Data Fusion for Multi-View Stereo Reconstruction. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 41–50. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-40602-7 5
[12] A. Kuhn, H. Hirschmu¨ller, D. Scharstein, and H. Mayer, “A TV
prior for high-quality scalable multi-view stereo reconstruction,”
International Journal of Computer Vision, pp. 1–16, 2016. [Online].
Available: http://dx.doi.org/10.1007/s11263-016-0946-x
[13] R. Pajarola, “Large scale terrain visualization using the restricted
quadtree triangulation,” inVisualization, Oct 1998, pp. 19–26.
[14] R. Perko and C. Zach, “Globally optimal robust DSM fusion,”Euro-
peanJournalofRemoteSensing, vol. 49, pp. 489–511, Sept. 2016.
[15] M. Rothermel, N. Haala, and D. Fritsch, “A Median-Based Depthmap
Fusion Strategy for the Generation of Oriented Points,” ISPRSAnnals
ofPhotogrammetry,RemoteSensingandSpatial InformationSciences,
pp. 115–122, June 2016.
[16] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”
in IEEEInternationalConferenceonRoboticsandAutomation(ICRA),
Shanghai, China, May 9-13 2011.
[17] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski,
“A comparison and evaluation of multi-view stereo reconstruction
algorithms,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 1, June 2006, pp. 519–528.
[18] B. Ummenhofer and T. Brox, “Global, dense multiscale reconstruction
for a billion points,” in IEEE International Conference on
Computer Vision (ICCV), Dec 2015. [Online]. Available: http:
//lmb.informatik.uni-freiburg.de//Publications/2015/UB15
[19] C. Zach, T. Pock, and H. Bischof, “A globally optimal algorithm for
robust tv-l1 range image integration,” in IEEEInternationalConference
onComputerVision (ICCV), Oct 2007, pp. 1–8.
133
Proceedings of the OAGM&ARW Joint Workshop
Vision, Automation and Robotics
- Title
- Proceedings of the OAGM&ARW Joint Workshop
- Subtitle
- Vision, Automation and Robotics
- Authors
- Peter M. Roth
- Markus Vincze
- Wilfried Kubinger
- Andreas MĂĽller
- Bernhard Blaschitz
- Svorad Stolc
- Publisher
- Verlag der Technischen Universität Graz
- Location
- Wien
- Date
- 2017
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-85125-524-9
- Size
- 21.0 x 29.7 cm
- Pages
- 188
- Keywords
- Tagungsband
- Categories
- International
- Tagungsbände