Page - 103 - in Programming for Computations – Python - A Gentle Introduction to Numerical Simulations with Python
Image of the Page - 103 -
Text of the Page - 103 -
4.1 PopulationGrowth 103
N[0] = N_0
for n in range(N_t+1):
N[n+1] = N[n] + r*dt*N[n]
import matplotlib.pyplot as plt
numerical_sol = ’bo’ if N_t < 70 else ’b-’
plt.plot(t, N, numerical_sol, t, N_0*exp(r*t), ’r-’)
plt.legend([’numerical’, ’exact’], loc=’upper left’)
plt.xlabel(’t’); plt.ylabel(’N(t)’)
filestem = ’growth1_%dsteps’ % N_t
plt.savefig(’%s.png’ % filestem); plt.savefig(’%s.pdf’ % filestem)
Thecompletecodeaboveresides in thefilegrowth1.py.
Let us demonstrate a simulationwherewe startwith 100animals, a net growth
rate of 10 percent (0.1) per time unit, which can be onemonth, and t 2 Œ0;20
months. Wemayfirst try t of half amonth (0.5),which impliesNt D 40 (or to
be absolutely precise, the last time point to be computed according to our set-up
above is tNtC1 D 20:5). Figure 4.4 shows the results. The solid line is the exact
solution,while thecirclesare thecomputednumerical solution. Thediscrepancy is
clearly visible. What ifwemake t 10 times smaller? The result is displayed in
Fig. 4.5,wherewenowuse a solid line also for thenumerical solution (otherwise,
400 circleswould lookverycluttered, so the programhas a test onhow todisplay
the numerical solution, either as circles or a solid line). Wecanhardlydistinguish
the exact and the numerical solution. The computing time is also a fraction of
a second on a laptop, so it appears that the Forward Eulermethod is sufficiently
accurate for practical purposes. (This is not always true for large, complicated
simulationmodels inengineering, somore sophisticatedmethodsmaybeneeded.)
Fig.4.4 Evolutionof apopulationcomputedwith timestep0.5month
back to the
book Programming for Computations – Python - A Gentle Introduction to Numerical Simulations with Python"
Programming for Computations – Python
A Gentle Introduction to Numerical Simulations with Python
- Title
- Programming for Computations – Python
- Subtitle
- A Gentle Introduction to Numerical Simulations with Python
- Authors
- Svein Linge
- Hans Petter Langtangen
- Publisher
- Springer Open
- Date
- 2016
- Language
- English
- License
- CC BY-NC 4.0
- ISBN
- 978-3-319-32428-9
- Size
- 17.8 x 25.4 cm
- Pages
- 248
- Keywords
- Programmiersprache, Informatik, programming language, functional, imperative, object-oriented, reflective
- Category
- Informatik