Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Programming for Computations – Python - A Gentle Introduction to Numerical Simulations with Python 3.6, Volume Second Edition
Page - XXII -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - XXII - in Programming for Computations – Python - A Gentle Introduction to Numerical Simulations with Python 3.6, Volume Second Edition

Image of the Page - XXII -

Image of the Page - XXII - in Programming for Computations – Python - A Gentle Introduction to Numerical Simulations with Python 3.6, Volume Second Edition

Text of the Page - XXII -

xxii ListofExercises Exercise4.10:Linear Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Exercise4.11:Test StraightLineRequirement . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Exercise4.12:Fit StraightLine toData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Exercise4.13:Fit Sines toStraightLine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Exercise5.1:NestedforLoopsandLists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Exercise5.2:ExceptionHandling:Divisions ina Loop . . . . . . . . . . . . . . . . . . . 125 Exercise5.3:TaylorSeries,sympyandDocumentation . . . . . . . . . . . . . . . . . . . 125 Exercise5.4:FibonacciNumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Exercise5.5:Read File: TotalVolumeofBoxes . . . . . . . . . . . . . . . . . . . . . . . . . 127 Exercise5.6:Area ofa Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Exercise5.7:CountOccurrencesofaString ina String . . . . . . . . . . . . . . . . . . . 128 Exercise5.8:ComputeCombinationsofSets . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Exercise6.1:HandCalculations for the TrapezoidalMethod . . . . . . . . . . . . . . 169 Exercise6.2:HandCalculations for the MidpointMethod. . . . . . . . . . . . . . . . . 169 Exercise6.3:ComputeaSimple Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Exercise6.4:Hand-CalculationswithSine Integrals. . . . . . . . . . . . . . . . . . . . . . 169 Exercise6.5:MakeTest Functions for theMidpointMethod. . . . . . . . . . . . . . . 169 Exercise6.6:ExploreRoundingErrorswithLargeNumbers. . . . . . . . . . . . . . . 169 Exercise6.7:Write Test Functionsfor ∫4 0 √ xdx . . . . . . . . . . . . . . . . . . . . . . . . . 170 Exercise6.8:RectangleMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 Exercise6.9:Adaptive Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Exercise6.10: IntegratingxRaised tox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 Exercise6.11: IntegrateProductsofSineFunctions . . . . . . . . . . . . . . . . . . . . . . 172 Exercise6.12:Revisit Fit ofSines toa Function . . . . . . . . . . . . . . . . . . . . . . . . . 172 Exercise6.13:Derive the TrapezoidalRule fora Double Integral . . . . . . . . . . . 173 Exercise6.14:Compute theAreaofa TrianglebyMonteCarlo Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Exercise7.1:UnderstandWhyNewton’sMethodCanFail . . . . . . . . . . . . . . . . 198 Exercise7.2:See If theSecantMethodFails . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Exercise7.3:UnderstandWhytheBisectionMethodCannotFail . . . . . . . . . . 199 Exercise7.4:Combine theBisectionMethodwith Newton’sMethod . . . . . . . 199 Exercise7.5:Write a Test FunctionforNewton’sMethod . . . . . . . . . . . . . . . . . 199 Exercise7.6:Halley’sMethodand the DecimalModule . . . . . . . . . . . . . . . . . . 199 Exercise7.7:FixedPoint Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Exercise7.8:SolveNonlinearEquationfora VibratingBeam. . . . . . . . . . . . . . 201 Exercise8.1:Restructurea GivenCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Exercise8.2:GeometricConstructionof the ForwardEulerMethod . . . . . . . . 273 Exercise8.3:MakeTest Functions for theForwardEulerMethod . . . . . . . . . . 273 Exercise8.4: ImplementandEvaluateHeun’sMethod. . . . . . . . . . . . . . . . . . . . 274 Exercise8.5:Find anAppropriateTimeStep;LogisticModel . . . . . . . . . . . . . 274 Exercise8.6:Find anAppropriateTimeStep;SIRModel . . . . . . . . . . . . . . . . . 274 Exercise8.7:ModelanAdaptiveVaccinationCampaign . . . . . . . . . . . . . . . . . . 274 Exercise8.8:Makea SIRV ModelwithTime-LimitedEffect ofVaccination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Exercise8.9:Refactora Flat Program.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 Exercise8.10:SimulateOscillationsbya GeneralODE Solver . . . . . . . . . . . . 275 Exercise8.11:Compute theEnergyin Oscillations. . . . . . . . . . . . . . . . . . . . . . . 276
back to the  book Programming for Computations – Python - A Gentle Introduction to Numerical Simulations with Python 3.6, Volume Second Edition"
Programming for Computations – Python A Gentle Introduction to Numerical Simulations with Python 3.6, Volume Second Edition
Title
Programming for Computations – Python
Subtitle
A Gentle Introduction to Numerical Simulations with Python 3.6
Volume
Second Edition
Authors
Svein Linge
Hans Petter Langtangen
Publisher
Springer Open
Date
2020
Language
English
License
CC BY 4.0
ISBN
978-3-319-32428-9
Size
17.8 x 25.4 cm
Pages
356
Keywords
Programmiersprache, Informatik, programming language, functional, imperative, object-oriented, reflective
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Programming for Computations – Python