Page - XXII - in Programming for Computations – Python - A Gentle Introduction to Numerical Simulations with Python 3.6, Volume Second Edition
Image of the Page - XXII -
Text of the Page - XXII -
xxii ListofExercises
Exercise4.10:Linear Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Exercise4.11:Test StraightLineRequirement . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Exercise4.12:Fit StraightLine toData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Exercise4.13:Fit Sines toStraightLine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Exercise5.1:NestedforLoopsandLists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Exercise5.2:ExceptionHandling:Divisions ina Loop . . . . . . . . . . . . . . . . . . . 125
Exercise5.3:TaylorSeries,sympyandDocumentation . . . . . . . . . . . . . . . . . . . 125
Exercise5.4:FibonacciNumbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Exercise5.5:Read File: TotalVolumeofBoxes . . . . . . . . . . . . . . . . . . . . . . . . . 127
Exercise5.6:Area ofa Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Exercise5.7:CountOccurrencesofaString ina String . . . . . . . . . . . . . . . . . . . 128
Exercise5.8:ComputeCombinationsofSets . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Exercise6.1:HandCalculations for the TrapezoidalMethod . . . . . . . . . . . . . . 169
Exercise6.2:HandCalculations for the MidpointMethod. . . . . . . . . . . . . . . . . 169
Exercise6.3:ComputeaSimple Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Exercise6.4:Hand-CalculationswithSine Integrals. . . . . . . . . . . . . . . . . . . . . . 169
Exercise6.5:MakeTest Functions for theMidpointMethod. . . . . . . . . . . . . . . 169
Exercise6.6:ExploreRoundingErrorswithLargeNumbers. . . . . . . . . . . . . . . 169
Exercise6.7:Write Test Functionsfor ∫4
0 √
xdx . . . . . . . . . . . . . . . . . . . . . . . . . 170
Exercise6.8:RectangleMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Exercise6.9:Adaptive Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Exercise6.10: IntegratingxRaised tox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Exercise6.11: IntegrateProductsofSineFunctions . . . . . . . . . . . . . . . . . . . . . . 172
Exercise6.12:Revisit Fit ofSines toa Function . . . . . . . . . . . . . . . . . . . . . . . . . 172
Exercise6.13:Derive the TrapezoidalRule fora Double Integral . . . . . . . . . . . 173
Exercise6.14:Compute theAreaofa TrianglebyMonteCarlo
Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Exercise7.1:UnderstandWhyNewton’sMethodCanFail . . . . . . . . . . . . . . . . 198
Exercise7.2:See If theSecantMethodFails . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Exercise7.3:UnderstandWhytheBisectionMethodCannotFail . . . . . . . . . . 199
Exercise7.4:Combine theBisectionMethodwith Newton’sMethod . . . . . . . 199
Exercise7.5:Write a Test FunctionforNewton’sMethod . . . . . . . . . . . . . . . . . 199
Exercise7.6:Halley’sMethodand the DecimalModule . . . . . . . . . . . . . . . . . . 199
Exercise7.7:FixedPoint Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Exercise7.8:SolveNonlinearEquationfora VibratingBeam. . . . . . . . . . . . . . 201
Exercise8.1:Restructurea GivenCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Exercise8.2:GeometricConstructionof the ForwardEulerMethod . . . . . . . . 273
Exercise8.3:MakeTest Functions for theForwardEulerMethod . . . . . . . . . . 273
Exercise8.4: ImplementandEvaluateHeun’sMethod. . . . . . . . . . . . . . . . . . . . 274
Exercise8.5:Find anAppropriateTimeStep;LogisticModel . . . . . . . . . . . . . 274
Exercise8.6:Find anAppropriateTimeStep;SIRModel . . . . . . . . . . . . . . . . . 274
Exercise8.7:ModelanAdaptiveVaccinationCampaign . . . . . . . . . . . . . . . . . . 274
Exercise8.8:Makea SIRV ModelwithTime-LimitedEffect
ofVaccination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Exercise8.9:Refactora Flat Program.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Exercise8.10:SimulateOscillationsbya GeneralODE Solver . . . . . . . . . . . . 275
Exercise8.11:Compute theEnergyin Oscillations. . . . . . . . . . . . . . . . . . . . . . . 276
Programming for Computations – Python
A Gentle Introduction to Numerical Simulations with Python 3.6, Volume Second Edition
- Title
- Programming for Computations – Python
- Subtitle
- A Gentle Introduction to Numerical Simulations with Python 3.6
- Volume
- Second Edition
- Authors
- Svein Linge
- Hans Petter Langtangen
- Publisher
- Springer Open
- Date
- 2020
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-319-32428-9
- Size
- 17.8 x 25.4 cm
- Pages
- 356
- Keywords
- Programmiersprache, Informatik, programming language, functional, imperative, object-oriented, reflective
- Category
- Informatik