Page - V - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - V -
Text of the Page - V -
Contents
About theSpecial IssueEditors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Preface to”Short-TermLoadForecastingbyArtificial IntelligentTechnologies” . . . . . . . . . ix
Ming-WeiLi, JingGeng,Wei-ChiangHongandYangZhang
HybridizingChaotic andQuantumMechanisms and Fruit FlyOptimizationAlgorithmwith
LeastSquaresSupportVectorRegressionModel inElectricLoadForecasting
Reprintedfrom:Energies2018,11, 2226,doi:10.3390/en11092226 . . . . . . . . . . . . . . . . . . . 1
YongquanDong,ZichenZhangandWei-ChiangHong
AHybridSeasonalMechanismwithaChaoticCuckooSearchAlgorithmwithaSupportVector
RegressionModel forElectricLoadForecasting
Reprintedfrom:Energies2018,11, 1009,doi:10.3390/en11041009 . . . . . . . . . . . . . . . . . . . 23
AshfaqAhmad,NadeemJavaid,AbdulMateen,MuhammadAwaisandZahoorAliKhan
Short-TermLoadForecasting inSmartGrids:AnIntelligentModularApproach
Reprintedfrom:Energies2019,12, 164,doi:10.3390/en12010164 . . . . . . . . . . . . . . . . . . . . 44
SeonHyeogKim,GyulLee,Gu-YoungKwon,Do-InKimandYong-JuneShin
DeepLearningBasedonMulti-DecompositionforShort-TermLoadForecasting
Reprintedfrom:Energies2018,11, 3433,doi:10.3390/en11123433 . . . . . . . . . . . . . . . . . . . 65
Fu-ChengWangandKuang-MingLin
Impacts of Load Profiles on the Optimization of Power Management of a Green Building
EmployingFuelCells
Reprintedfrom:Energies2019,12, 57,doi:10.3390/en12010057 . . . . . . . . . . . . . . . . . . . . 82
HabeeburRahman, IniyanSelvarasanandJahithaBegumA
Short-TermForecastingofTotalEnergyConsumptionfor India-ABlackBoxBasedApproach
Reprintedfrom:Energies2018,11, 3442,doi:10.3390/en11123442 . . . . . . . . . . . . . . . . . . . 98
JihoonMoon,YongsungKim,MinjaeSonandEenjunHwang
HybridShort-TermLoadForecastingSchemeUsingRandomForestandMultilayerPerceptron
Reprintedfrom:Energies2018,11, 3283,doi:10.3390/en11123283 . . . . . . . . . . . . . . . . . . . 119
MiguelLo´pez,CarlosSans,SergioValeroandCarolinaSenabre
Empirical Comparison ofNeuralNetwork andAuto-RegressiveModels in Short-TermLoad
Forecasting
Reprintedfrom:Energies2018,11, 2080,doi:10.3390/en11082080 . . . . . . . . . . . . . . . . . . . 139
Marı´adelCarmenRuiz-Abello´n,AntonioGabaldo´nandAntonioGuillamo´n
LoadForecastingforaCampusUniversityUsingEnsembleMethodsBasedonRegressionTrees
Reprintedfrom:Energies2018,11, 2038,doi:10.3390/en11082038 . . . . . . . . . . . . . . . . . . . 158
GregoryD.Merkel,RichardJ.PovinelliandRonaldH.Brown
Short-TermLoadForecastingofNaturalGaswithDeepNeuralNetworkRegression
Reprintedfrom:Energies2018,11, 2008,doi:10.3390/en11082008 . . . . . . . . . . . . . . . . . . . 180
Fu-ChengWang,Yi-ShaoHsiaoandYi-ZheYang
TheOptimizationofHybridPowerSystemswithRenewableEnergyandHydrogenGeneration
Reprintedfrom:Energies2018,11, 1948,doi:10.3390/en11081948 . . . . . . . . . . . . . . . . . . . 192
v
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik