Page - 1 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 1 -
Text of the Page - 1 -
energies
Article
HybridizingChaoticandQuantumMechanismsand
FruitFlyOptimizationAlgorithmwithLeastSquares
SupportVectorRegressionModel inElectric
LoadForecasting
Ming-WeiLi 1, JingGeng1,Wei-ChiangHong2,* ID andYangZhang1
1 Collegeofshipbuildingengineering,HarbinEngineeringUniversity,Harbin150001,Heilongjiang,China;
limingwei@hrbeu.edu.cn(M.-W.L.);gengjing@hrbeu.edu.cn(J.G.); zhangyang@hrbeu.edu.cn(Y.Z.)
2 SchoolofEducationIntelligentTechnology, JiangsuNormalUniversity/No. 101,ShanghaiRd.,
TongshanDistrict,Xuzhou221116, Jiangsu,China
* Correspondence: samuelsonhong@gmail.com;Tel.:+86-516-83500307
Received: 13August2018;Accepted: 22August2018;Published: 24August2018
Abstract:Comparedwitha largepowergrid,amicrogridelectric load(MEL)has thecharacteristics
ofstrongnonlinearity,multiple factors,andlargefluctuation,whichleadtoitbeingdifficult toreceive
moreaccurate forecastingperformances. Tosolve theabovementionedcharacteristicsofaMELtime
series, the least squaressupportvectormachine (LS-SVR)hybridizingwithmeta-heuristicalgorithms
is applied to simulate thenonlinear systemofaMELtimeseries. As it isknownthat the fruitfly
optimizationalgorithm(FOA)hasseveralembeddeddrawbacks that leadtoproblems, thispaper
applies aquantumcomputingmechanism(QCM) toempowereach fruitfly topossessquantum
behaviorduring thesearchingprocesses, i.e., aQFOAalgorithm.Eventually, thecat chaoticmapping
function is introducedinto theQFOAalgorithm,namelyCQFOA, to implement thechaoticglobal
perturbationstrategytohelpfruitfliestoescapefromthelocaloptimawhilethepopulation’sdiversity
ispoor. Finally,anewMELforecastingmethod,namely theLS-SVR-CQFOAmodel, isestablished
byhybridizing theLS-SVRmodelwithCQFOA.Theexperimental results illustrate that, in three
datasets, theproposedLS-SVR-CQFOAmodel is superior toother alternativemodels, including
BPNN(back-propagationneuralnetworks),LS-SVR-CQPSO(LS-SVRwithchaoticquantumparticle
swarmoptimizationalgorithm),LS-SVR-CQTS(LS-SVRwithchaoticquantumtabusearchalgorithm),
LS-SVR-CQGA(LS-SVRwith chaotic quantumgenetic algorithm), LS-SVR-CQBA(LS-SVRwith
chaoticquantumbatalgorithm),LS-SVR-FOA,andLS-SVR-QFOAmodels, in termsof forecasting
accuracy indexes. Inaddition, itpasses thesignificance testata97.5%confidence level.
Keywords: least squares support vector regression (LS-SVR); chaos theory; quantumcomputing
mechanism(QCM); fruitflyoptimizationalgorithm(FOA);microgridelectric loadforecasting (MEL)
1. Introduction
1.1.Motivation
MELforecasting is thebasisofmicrogridoperationschedulingandenergymanagement. It is
an important prerequisite for the intelligentmanagement of distributed energy. The forecasting
performancewoulddirectlyaffect themicrogrid system’s energy trading,power supplyplanning,
andpower supply quality. However, theMEL forecasting accuracy is not only influencedby the
mathematicalmodel,butalsobytheassociatedhistoricaldataset. Inaddition,comparedwiththe large
powergrid,microgridelectric load(MEL)hasthecharacteristicsofstrongnonlinearity,multiplefactors,
andlargefluctuation,whichleadtoitbeingdifficult toachievemoreaccurateforecastingperformances.
Alongwith the development of artificial intelligent technologies, load forecastingmethods have
Energies2018,11, 2226;doi:10.3390/en11092226 www.mdpi.com/journal/energies1
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik