Page - 4 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 4 -
Text of the Page - 4 -
Energies2018,11, 2226
prematureproblemofFOA.Eventually,determinemoreappropriateparametersofanLS-SVRmodel.
Themajorcontributionsareas follows:
(1) QCMisemployedtoempower thesearchabilityofeachfruitflyduringthesearchingprocesses
ofQFOA.Thecatchaoticmappingfunction is introducedintoQFOAandimplements thechaotic
globalperturbationstrategytohelpafruitflyescapefromthelocaloptimawhenthepopulation’s
diversity ispoor.
(2) Weproposeanovelhybridoptimizationalgorithm,namelyCQFOA,tobehybridizedwithan
LS-SVRmodel,namelytheLS-SVR-CQFOAmodel, toconducttheMELforecasting.Othersimilar
alternativehybridalgorithms(hybridizingchaoticmappingfunction,QCM,andevolutionary
algorithms) inexistingpapers, suchas theCQPSOalgorithmusedbyHuang[36], theCQTSand
CQGAalgorithmsusedbyLeeandLin[37,38], andtheCQBAalgorithmusedbyLietal. [39],
areselectedasalternativemodels to test thesuperiorityof theLS-SVR-CQFOAmodel in termsof
forecastingaccuracy.
(3) The forecasting results illustrate that, in threedatasets, theproposedLS-SVR-CQFOAmodel
is superior to other alternativemodels in termsof forecasting accuracy indexes; in addition,
itpasses thesignificance testata97.5%confidence level.
1.4. TheOrganizationofThisPaper
The rest of this paper is organized as follows. Themodeling details of an LS-SVRmodel,
theproposedCQFOA,andtheproposedLS-SVR-CQFOAmodelare introduced inSection2. Section3
presentsanumericalexampleandacomparisonof theproposedLS-SVR-CQFOAmodelwithother
alternativemodels. SomeinsightdiscussionsareprovidedinSection4. Finally, theconclusionsare
given inSection5.
2.MaterialsandMethods
2.1. LeastSquaresSupportVectorRegression (LS-SVR)
TheSVRmodel isanalgorithmbasedonpatternrecognitionofstatistical learningtheory. It is
anovelmachine learningapproachproposedbyVapnik in themid-1990s [17]. TheLS-SVRmodel
was put forward by Suykens [20]. It is an improvement and an extension of the standard SVR
model, which replaces the inequality constraints of an SVRmodel with equality constraint [21].
TheLS-SVRmodelconvertsquadraticprogrammingproblemintolinearprogrammingsolving,reduces
thecomputationalcomplexity,andimproves theconvergentspeed. It cansolve the loadforecasting
problemsdueto itscharacteristicsofnonlinearity,highdimension,andlocalminima.
2.1.1. Principleof theStandardSVRModel
Setadatasetas{(xi,yi)}Ni=1, xi∈Rn is the inputvectorofn-dimensional system,yi∈R is the
output (notasingle realvalue,butan-dimensionalvector)of system.Thebasic ideaof theSVRmodel
canbesummarizedasfollows:n-dimensional inputsamplesaremappedfromtheoriginalspacetothe
high-dimensional featurespaceFbynonlinear transformationϕ(·), andtheoptimal linear regression
function isconstructed in this space,asshowninEquation(1) [17]:
f(x)=wTϕ(x)+b, (1)
where f(x)representstheforecastingvalues; theweight,w, andthecoefficient,b,wouldbedetermined
duringtheSVRmodelingprocesses.
ThestandardSVRmodel takes the ε insensitive loss functionasanestimationproblemforrisk
minimization, thus theoptimizationobjectivecanbeexpressedas inEquation(2) [17]:
4
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik