Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Page - 5 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 5 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Image of the Page - 5 -

Image of the Page - 5 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text of the Page - 5 -

Energies2018,11, 2226 min 12w Tw+c N ∑ i=1 ( ξi+ξ ∗ i ) s.t. ⎧⎪⎪⎪⎨⎪⎪⎪⎩ yi−wTϕ(xi)−b≤ ε+ξi wT(xi)+b−yi≤ ε+ξ∗i ξi≥0, ξ∗i ≥0 i=1, · · · ,N , (2) wherec is thebalance factor,usuallyset to1,andξi andξ∗i are theerrorof introducing the trainingset, whichcanrepresent theextent towhichthesamplepointexceeds thefittingprecision ε. Equation(2)couldbesolvedaccordingtoquadraticprogrammingprocesses; thesolutionof the weight,w, inEquation(2) is calculatedas inEquation(3) [17]: w∗= N ∑ i=1 (αi−α∗i )ϕ(x), (3) whereαi andα∗i areLagrangemultipliers. TheSVRfunction iseventuallyconstructedas inEquation(4) [17]: y(x)= N ∑ i=1 (αi−α∗i )Ψ(xi,x)+b, (4) whereΨ(xi,x), theso-calledkernel function, is introducedtoreplace thenonlinearmappingfunction, ϕ(·), as showninEquation(5) [15]: Ψ ( xi,xj ) =ϕ(xi) Tϕ ( xj ) . (5) 2.1.2. Principleof theLS-SVRModel TheLS-SVRmodel isanextensionof thestandardSVRmodel. It selects thebinomialoferrorξt as the loss function; thentheoptimizationproblemcanbedescribedas inEquation(6) [20]: min 12w Tw+ 12γ N ∑ i=1 ξ2i s.t.yi=wTϕ(xi)+b+ξi, i=1,2, · · · ,N (6) where thebigger thepositiverealnumberγ is, thesmaller theregressionerrorof themodel is. TheLS-SVRmodeldefines the loss functiondifferent fromthestandardSVRmodel, andchanges its inequality constraint into an equality constraint so thatw can be obtained in the dual space. After obtaining parameters α and b by quadratic programming processes, the LS-SVRmodel is describedas inEquation(7) [20]: y(x)= N ∑ i=1 αiΨ(xi,x)+b. (7) It canbeseen thatanLS-SVRmodel contains twoparameters, the regularizationparameterγ andtheradialbasiskernel function,σ2. TheforecastingperformanceofanLS-SVRmodel is related to theselectionofγandσ2. The roleofγ is tobalance theconfidence rangeandexperience riskof learningmachines. Ifγ is too large, thegoal isonly tominimize theexperiencerisk.Onthecontrary, when thevalueofγ is toosmall, thepenalty for theexperienceerrorwill be small, thus increasing thevalueofexperienceriskσ controls thewidthof theGaussiankernel functionandthedistribution rangeof the trainingdata. The smallerσ is, thegreater the structural risk there is,which leads to overfitting. Therefore, theparameterselectionofanLS-SVRmodelhasalwaysbeenthekeyto improve the forecastingaccuracy. 5
back to the  book Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Title
Short-Term Load Forecasting by Artificial Intelligent Technologies
Authors
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Editor
MDPI
Location
Basel
Date
2019
Language
English
License
CC BY 4.0
ISBN
978-3-03897-583-0
Size
17.0 x 24.4 cm
Pages
448
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies