Page - 5 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 5 -
Text of the Page - 5 -
Energies2018,11, 2226
min 12w Tw+c N
∑
i=1 (
ξi+ξ ∗
i )
s.t. ⎧⎪⎪⎪⎨⎪⎪⎪⎩ yi−wTϕ(xi)−b≤ ε+ξi
wT(xi)+b−yi≤ ε+ξ∗i
ξi≥0, ξ∗i ≥0
i=1, · · · ,N , (2)
wherec is thebalance factor,usuallyset to1,andξi andξ∗i are theerrorof introducing the trainingset,
whichcanrepresent theextent towhichthesamplepointexceeds thefittingprecision ε.
Equation(2)couldbesolvedaccordingtoquadraticprogrammingprocesses; thesolutionof the
weight,w, inEquation(2) is calculatedas inEquation(3) [17]:
w∗= N
∑
i=1 (αi−α∗i )ϕ(x), (3)
whereαi andα∗i areLagrangemultipliers.
TheSVRfunction iseventuallyconstructedas inEquation(4) [17]:
y(x)= N
∑
i=1 (αi−α∗i )Ψ(xi,x)+b, (4)
whereΨ(xi,x), theso-calledkernel function, is introducedtoreplace thenonlinearmappingfunction,
ϕ(·), as showninEquation(5) [15]:
Ψ (
xi,xj )
=ϕ(xi) Tϕ (
xj )
. (5)
2.1.2. Principleof theLS-SVRModel
TheLS-SVRmodel isanextensionof thestandardSVRmodel. It selects thebinomialoferrorξt
as the loss function; thentheoptimizationproblemcanbedescribedas inEquation(6) [20]:
min 12w Tw+ 12γ N
∑
i=1 ξ2i
s.t.yi=wTϕ(xi)+b+ξi, i=1,2, · · · ,N (6)
where thebigger thepositiverealnumberγ is, thesmaller theregressionerrorof themodel is.
TheLS-SVRmodeldefines the loss functiondifferent fromthestandardSVRmodel, andchanges
its inequality constraint into an equality constraint so thatw can be obtained in the dual space.
After obtaining parameters α and b by quadratic programming processes, the LS-SVRmodel is
describedas inEquation(7) [20]:
y(x)= N
∑
i=1 αiΨ(xi,x)+b. (7)
It canbeseen thatanLS-SVRmodel contains twoparameters, the regularizationparameterγ
andtheradialbasiskernel function,σ2. TheforecastingperformanceofanLS-SVRmodel is related
to theselectionofγandσ2. The roleofγ is tobalance theconfidence rangeandexperience riskof
learningmachines. Ifγ is too large, thegoal isonly tominimize theexperiencerisk.Onthecontrary,
when thevalueofγ is toosmall, thepenalty for theexperienceerrorwill be small, thus increasing
thevalueofexperienceriskσ controls thewidthof theGaussiankernel functionandthedistribution
rangeof the trainingdata. The smallerσ is, thegreater the structural risk there is,which leads to
overfitting. Therefore, theparameterselectionofanLS-SVRmodelhasalwaysbeenthekeyto improve
the forecastingaccuracy.
5
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik