Page - 8 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 8 -
Text of the Page - 8 -
Energies2018,11, 2226
qi= {
αi1 αi2 · · · αil
βi1 βi2 · · · βil }
, (20)
whereα2ij+β 2
ij=1; i=1,2, . . . ,N; j=1,2, . . . , l; and0≤αij≤1,0≤ βij≤1.
Quantum rotation is a quantum revolving door determined by the quantum rotation angle,
whichupdates thequantumsequenceandconductsarandomsearcharoundthepositionofquantum
fruit flies to explore the local optimal solution. The θgij is the jth quantum rotation angle of the
population iterated to the ith fruitflyofgeneration,g, andthequantumbitqgij (due to thenonnegative
positionconstraintofqgij, theabsolute function,abs() isusedto take theabsolutevalueofeachelement
in the calculation result) isupdatedaccording to thequantumrevolvinggateU (
θ g
ij )
, as shown in
Equations (21)and(22) [34,35]:
qg+1ij =abs (
U (
θ g+1
ij )
×qgij )
(21)
U (
θ g
ij )
= [ cosθgij −sinθ g
ij
sinθgij cosθ g
ij ]
. (22)
In special cases, when the quantum rotation angle, θg+1ij , is equal to 0, the quantum bit, q g+1
ij ,
usesquantumnon-gateN toupdatewithsomesmallprobability,as indicated inEquation(23) [35]:
qt+1ij =N×qtij= [
0 1
1 0 ]
×qtij. (23)
2.2.3.ChaoticQuantumGlobalPerturbation
Forabionicevolutionaryalgorithm, it isageneralphenomenonthat thepopulation’sdiversity
wouldbepoor,alongwiththeincreasediterations. Thisphenomenonwouldalsoleadtobeingtrapped
into local optimaduringmodelingprocesses. Asmentioned, the chaoticmapping functioncanbe
employedtomaintain thepopulation’sdiversity toavoidtrappinginto localoptima.Manystudies
haveapplied chaotic theory to improve theperformancesof thesebionic evolutionaryalgorithms,
such as the artificial bee colony (ABC) algorithm [41], and theparticle swarmoptimization (PSO)
algorithm[42]. Theauthorshavealso employed the cat chaoticmapping function to improve the
geneticalgorithm(GA)[43], thePSOalgorithm[44],andthebatalgorithm[39], theresultsofwhich
demonstrate that the searchingquality ofGA, PSO,ABC, andBAalgorithms could be improved
by employing chaoticmapping functions. Hence, the cat chaoticmapping function is once again
usedas theglobalchaoticperturbationstrategy(GCPS) in thispaper,andishybridizedwithQFOA,
namelyCQFOA,whichhybridizesGCPSwith theQFOAwhilesufferingfromtheproblemofbeing
trappedinto localoptimaduringthe iterativemodelingprocesses.
The two-dimensionalcatmappingfunction isshownas inEquation(24)
[39]:{
yt+1= frac ( yt+zt )
zt+1= frac ( yt+2zt ) , (24)
where frac function is used to calculate the fractional parts of a real number, y, by subtracting an
approachedinteger.
Theglobalchaoticperturbationstrategy(GCPS) is illustratedas follows.
(1) Generate2popsize chaoticdisturbance fruitflies. For eachFruit flyi (I=1, 2, . . . , 2popsize),
Equation(24) isappliedtogenerated randomnumbers,zj, j=1,2, . . . ,d. Then, thequbit (with
quantumstate, |0〉) amplitude, cosθij, ofFruit flyi is showninEquation(25):
cosθij= yj=2zj−1. (25)
8
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik