Page - 10 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 10 -
Text of the Page - 10 -
Energies2018,11, 2226
Equation(14),andenable the individualquantumfruitflytoflyto theoptimalpositionwithvision,
as inEquations (29)and(30), thengotoStep6.Otherwise,go toStep6directly.
θ0= θBest_index (29)
q0= qBest_index (30)
Step6. Global chaosperturbation judgment. If thedistance from the last disturbance is equal to
NGCP, go toStep7; otherwise,go toStep8.
Step7.Globalchaosperturbationoperations. Basedonthecurrentpopulation, conduct theglobal
chaosperturbationalgorithm toobtain thenewCQFOApopulation. Then, take thenewCQFOA
populationas thenewpopulationofQFOA,andcontinuetoexecute theQFOAprocess.
Step 8. Iterative refinements. Determinewhether the current population satisfies the condition
of evolutionary termination. If so, stop the optimization process and output the optimal results.
Otherwise, repeatSteps2 to8.
3DUDPHWHU VHWWLQJ
*HQHUDWH LQLWLDO TXDQWXP SRVLWLRQ 4 DQG
TXDQWXP URWDWLRQ DQJOH ș RI TXDQWXP IUXLW
IO\ UDQGRPO\
8VH WKH TXDQWXP UHYROYLQJ GRRU WR XSGDWH
WKH TXDQWXP VHTXHQFH
&DOFXODWH /6 695 PRGHO SDUDPHWHUV EDVHG
RQ TXDQWXP IUXLW IO\
7UDLQ /6 695 PRGHO DFFRUGLQJ WR PRGHO
SDUDPHWHUV DQG WUDLQLQJ GDWD
$SSO\LQJ WKH WUDLQHG /6 695 PRGHO
FDOFXODWH WKH FRUUHVSRQGLQJ UHJUHVVLRQ YDOXHV
DQG XVH 7KH 0$3( RI WKH UHJUHVVLRQ YDOXH
DV ILWQHVV IXQFWLRQ
&DOFXODWH WKH WDVWH FRQFHQWUDWLRQ RI IUXLW IO\
DQG ILQG RXW WKH EHVW ILWQHVV YDOXH
)LQG WKH EHVW LQGLYLGXDOV RI WKH TXDQWXP IUXLW
IO\ DQG RSWLPDO SDUDPHWHU FRPELQDWLRQ
8SGDWH WKH JOREDO YDOXH DQG PDNH WKH IUXLW
IO\ IO\ WR WKH EHVW SRVLWLRQ E\ YLVLRQ
6PHOO EHVWFXUUHQW LV VXSHU
WR 6PHOO EHVW
<HV 1R 0HHW JOREDO FKDRV
SHUWXUEDWLRQ MXGJHPHQW
*HQHUDWH SRSVL]H FKDRWLF GLVWXUEDQFH IUXLW
IOLHV
6HOHFW SRSVL]H EHWWHU FKDRWLF GLVWXUEDQFH
)UXLW IOLHV
'HWHUPLQH SRSVL]H FXUUHQW IUXLW IOLHV ZLWK
EHWWHU ILWQHVV
)RUP WKH QHZ &4)2$ SRSXODWLRQ
7DNH WKH QHZ &4)2$ SRSXODWLRQ DV WKH
QHZ SRSXODWLRQ RI 4)2$ DQG FRQWLQXH WR
H[HFXWH WKH 4)2$ SURFHVV
0HHW WKH WHUPLQDWLQJ FRQGLWLRQV
7DNH WKH SDUDPHWHU FRPELQDWLRQ
FRUUHVSRQGLQJ WR WKH RSWLPDO IUXLW IO\ DV WKH
SDUDPHWHUV RI WKH /6 695 PRGHO
<HV
1R
<HV
1R
Figure1.ChaoticquantumFOAalgorithmflowchart.
10
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik