Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Page - 10 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 10 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Image of the Page - 10 -

Image of the Page - 10 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text of the Page - 10 -

Energies2018,11, 2226 Equation(14),andenable the individualquantumfruitflytoflyto theoptimalpositionwithvision, as inEquations (29)and(30), thengotoStep6.Otherwise,go toStep6directly. θ0= θBest_index (29) q0= qBest_index (30) Step6. Global chaosperturbation judgment. If thedistance from the last disturbance is equal to NGCP, go toStep7; otherwise,go toStep8. Step7.Globalchaosperturbationoperations. Basedonthecurrentpopulation, conduct theglobal chaosperturbationalgorithm toobtain thenewCQFOApopulation. Then, take thenewCQFOA populationas thenewpopulationofQFOA,andcontinuetoexecute theQFOAprocess. Step 8. Iterative refinements. Determinewhether the current population satisfies the condition of evolutionary termination. If so, stop the optimization process and output the optimal results. Otherwise, repeatSteps2 to8. 3DUDPHWHU VHWWLQJ *HQHUDWH LQLWLDO TXDQWXP SRVLWLRQ 4 DQG TXDQWXP URWDWLRQ DQJOH ș RI TXDQWXP IUXLW IO\ UDQGRPO\ 8VH WKH TXDQWXP UHYROYLQJ GRRU WR XSGDWH WKH TXDQWXP VHTXHQFH &DOFXODWH /6 695 PRGHO SDUDPHWHUV EDVHG RQ TXDQWXP IUXLW IO\ 7UDLQ /6 695 PRGHO DFFRUGLQJ WR PRGHO SDUDPHWHUV DQG WUDLQLQJ GDWD $SSO\LQJ WKH WUDLQHG /6 695 PRGHO FDOFXODWH WKH FRUUHVSRQGLQJ UHJUHVVLRQ YDOXHV DQG XVH 7KH 0$3( RI WKH UHJUHVVLRQ YDOXH DV ILWQHVV IXQFWLRQ &DOFXODWH WKH WDVWH FRQFHQWUDWLRQ RI IUXLW IO\ DQG ILQG RXW WKH EHVW ILWQHVV YDOXH )LQG WKH EHVW LQGLYLGXDOV RI WKH TXDQWXP IUXLW IO\ DQG RSWLPDO SDUDPHWHU FRPELQDWLRQ 8SGDWH WKH JOREDO YDOXH DQG PDNH WKH IUXLW IO\ IO\ WR WKH EHVW SRVLWLRQ E\ YLVLRQ 6PHOO EHVWFXUUHQW LV VXSHU WR 6PHOO EHVW <HV 1R 0HHW JOREDO FKDRV SHUWXUEDWLRQ MXGJHPHQW *HQHUDWH SRSVL]H FKDRWLF GLVWXUEDQFH IUXLW IOLHV 6HOHFW SRSVL]H EHWWHU FKDRWLF GLVWXUEDQFH )UXLW IOLHV 'HWHUPLQH SRSVL]H FXUUHQW IUXLW IOLHV ZLWK EHWWHU ILWQHVV )RUP WKH QHZ &4)2$ SRSXODWLRQ 7DNH WKH QHZ &4)2$ SRSXODWLRQ DV WKH QHZ SRSXODWLRQ RI 4)2$ DQG FRQWLQXH WR H[HFXWH WKH 4)2$ SURFHVV 0HHW WKH WHUPLQDWLQJ FRQGLWLRQV 7DNH WKH SDUDPHWHU FRPELQDWLRQ FRUUHVSRQGLQJ WR WKH RSWLPDO IUXLW IO\ DV WKH SDUDPHWHUV RI WKH /6 695 PRGHO <HV 1R <HV 1R Figure1.ChaoticquantumFOAalgorithmflowchart. 10
back to the  book Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Title
Short-Term Load Forecasting by Artificial Intelligent Technologies
Authors
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Editor
MDPI
Location
Basel
Date
2019
Language
English
License
CC BY 4.0
ISBN
978-3-03897-583-0
Size
17.0 x 24.4 cm
Pages
448
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies