Page - 12 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 12 -
Text of the Page - 12 -
Energies2018,11, 2226
Table1.Normalizationvaluesof loaddata for IDAS2014.
Time 14July 15July 16July 17July 18July 19July 20July
01:00 0.1617 0.1245 0.1526 0.2246 0.1870 0.3354 0.3669
02:00 0.0742 0.0000 0.0826 0.1590 0.1386 0.1924 0.1878
03:00 0.0000 0.0109 0.0000 0.0395 0.0381 0.1022 0.0919
04:00 0.0071 0.1278 0.0937 0.0000 0.0000 0.0000 0.0000
05:00 0.0531 0.1944 0.1419 0.1106 0.1218 0.1570 0.1770
06:00 0.0786 0.0611 0.0920 0.1428 0.1728 0.2558 0.2497
07:00 0.2636 0.1786 0.2724 0.3096 0.3788 0.4038 0.3943
08:00 0.3709 0.4417 0.3464 0.3586 0.4361 0.5129 0.4692
09:00 0.6872 0.5894 0.6549 0.7426 0.7970 0.6051 0.5829
10:00 0.9520 0.8746 0.9028 0.9055 0.9842 0.7632 0.7530
11:00 1.0000 0.9342 0.9650 0.9683 1.0000 0.8130 0.8332
12:00 0.9632 0.9730 0.9087 0.9217 0.9450 0.8935 0.8803
13:00 0.8552 1.0000 0.8135 0.8256 0.8821 0.8077 0.8122
14:00 0.8288 0.9152 0.9257 0.7377 0.8370 0.7185 0.7410
15:00 0.8224 0.8104 0.7663 0.7468 0.7961 0.6037 0.6882
16:00 0.8655 0.9448 0.8542 0.8099 0.8420 0.7347 0.7567
17:00 0.8552 0.7966 0.8340 0.8104 0.8323 0.7593 0.8439
18:00 0.9440 0.8809 0.9155 0.8976 0.9567 0.9286 0.9539
19:00 0.9574 0.8677 1.0000 0.9779 0.9694 0.9734 0.9741
20:00 0.9746 0.9693 0.9657 1.0000 0.9808 1.0000 1.0000
21:00 0.9372 0.8784 0.9236 0.9419 0.9546 0.9575 0.9664
22:00 0.8704 0.7697 0.7977 0.7889 0.8417 0.8634 0.8824
23:00 0.6328 0.5519 0.7193 0.6425 0.6655 0.5858 0.6035
24:00 0.3127 0.2114 0.2794 0.2559 0.3357 0.1080 0.0975
Table2.Normalizationvaluesof loaddata forGEFCom2014(Jan.).
Time 1January 2January 3January 4January 5January 6January 7January
01:00 0.1769 0.0568 0.1127 0.1314 0.1648 0.0769 0.0532
02:00 0.0877 0.0206 0.0338 0.0480 0.0765 0.0222 0.0123
03:00 0.0234 0.0000 0.0000 0.0000 0.0087 0.0000 0.0000
04:00 0.0000 0.0084 0.0035 0.0044 0.0063 0.0076 0.0140
05:00 0.0175 0.0746 0.0634 0.0497 0.0268 0.0565 0.0862
06:00 0.0863 0.2155 0.2134 0.1368 0.0938 0.2122 0.2569
07:00 0.1835 0.4382 0.4345 0.3082 0.2090 0.4740 0.5389
08:00 0.2763 0.5802 0.5894 0.4813 0.3517 0.6277 0.6503
09:00 0.4028 0.6453 0.6972 0.6705 0.5039 0.6849 0.6581
10:00 0.5212 0.7110 0.7683 0.7860 0.6136 0.7300 0.6693
11:00 0.5819 0.7455 0.8106 0.8073 0.6333 0.7446 0.6861
12:00 0.6016 0.7751 0.8042 0.7726 0.6080 0.7573 0.6900
13:00 0.6089 0.7684 0.7592 0.6936 0.5623 0.7300 0.6788
14:00 0.5789 0.7712 0.7176 0.5950 0.5221 0.7078 0.6754
15:00 0.5563 0.7634 0.6887 0.5400 0.4937 0.6842 0.6676
16:00 0.5768 0.7556 0.6852 0.5560 0.5560 0.7109 0.6928
17:00 0.8165 0.8836 0.8479 0.7913 0.8060 0.8558 0.8411
18:00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
19:00 0.9810 0.9605 0.9845 0.9423 0.9416 0.9778 0.9955
20:00 0.8984 0.8686 0.8859 0.8188 0.8036 0.8920 0.9379
21:00 0.7807 0.7723 0.7908 0.7087 0.6672 0.7903 0.8489
22:00 0.5885 0.6114 0.6289 0.4982 0.4219 0.6112 0.6933
23:00 0.3596 0.4399 0.4303 0.2860 0.1774 0.4180 0.4980
24:00 0.1923 0.2957 0.2542 0.0719 0.0000 0.2764 0.3553
12
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik