Page - 14 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 14 -
Text of the Page - 14 -
Energies2018,11, 2226
IfW is smaller than or equal to the critical value, based on theWilcoxondistributionunder
ndegrees of freedom, then the null hypothesis (i.e., equal performance from the two compared
forecastingmodels) couldnotbeaccepted, i.e., theproposedmodelachievessignificance.
3.3. TheForecastingResults of theLS-SVR-CQFOAModel
3.3.1. ParameterSettingof theCQFOAAlgorithm
Theparametersof theproposedCQFOAalgorithmfor thenumericalexamplearesetas follows:
thepopulationsize,popsize, is set to200; themaximal iteration,gen-max, is set to1000;andthecontrol
coefficientofchaoticdisturbance,NGCP, is set to15. These twoparametersof theLS-SVRmodelareset
as,γ∈ [0,1000], andσ∈ [0,500], respectively. The iterative timeofeachalgorithmissetas thesame
toensure thereliabilityof the forecastingresults.
3.3.2. ResultsandAnalysis
Considering the CQPSO, CQTS, and CQGA algorithms have been used to determine the
parameters of an SVR-based load forecastingmodel in [36–39], those existing algorithms are also
hybridizedwith an LS-SVRmodel to provide forecasting values to comparewith the proposed
modelhere. Thesealternativemodels includeLS-SVR-FOA,LS-SVR-QFOA,LS-SVR-CQPSO(LS-SVR
hybridizedwithchaoticquantumparticleswarmoptimizationalgorithm[36]),LS-SVR-CQTS(LS-SVR
hybridizedwithchaoticquantumTabusearchalgorithm[37]),LS-SVR-CQGA(LS-SVRhybridized
withchaoticquantumgeneticalgorithm[38]), andLS-SVR-CQBA(LS-SVRhybridizedwithchaotic
quantumbatalgorithm[39]), inordertocomparetheforecastingperformanceofLS-SVR-basedmodels
comprehensively, thisarticlealsoselectsBPNNmethodasacontrastmodel. Theparametersofan
LS-SVRmodelareselectedbytheCQPSO,CQTS,CQGA,CQBA,FOA,QFOA,andCQFOAalgorithms,
respectively. Thedetailsof thesuitableparametersofallmodels for the IDAS2014, theGEFCom2014
(Jan.) andtheGEFCom2014(July)dataareshowninTables4–6, respectively.
Table 4. LS-SVR parameters, MAPE, and computing times of CQFOA and other algorithms for
IDAS2014.
OptimizationAlgorithms LS-SVRParameters
MAPEofValidation(%) ComputingTimes(s)
γ σ
LS-SVR-CQPSO[36] 685 125 1.17 129
LS-SVR-CQTS[37] 357 118 1.13 113
LS-SVR-CQGA[38] 623 137 1.11 152
LS-SVR-CQBA[39] 469 116 1.07 227
LS-SVR-FOA 581 109 1.29 87
LS-SVR-QFOA 638 124 1.32 202
LS-SVR-CQFOA, 734 104 1.02 136
Table 5. Parameters combination of LS-SVR determined by CQFOA and other algorithms for
GEFCom2014(Jan.).
OptimizationAlgorithms Parameters
MAPEofValidation(%) ComputationTimes(s)
γ σ
LS-SVR-CQPSO[36] 574 87 0.98 134
LS-SVR-CQTS[37] 426 68 1.02 109
LS-SVR-CQGA[38] 653 98 0.95 155
LS-SVR-CQBA[39] 501 82 0.9 231
LS-SVR-FOA 482 94 1.54 82
LS-SVR-QFOA 387 79 1.13 205
LS-SVR-CQFOA, 688 88 0.86 132
14
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik