Page - 17 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 17 -
Text of the Page - 17 -
Energies2018,11, 2226
accuracy indexes than the other sevenmodels: RMSE (38.70), MAPE (1.01%), andMAE (37.48),
respectively. Thedetailsof theanalysis resultsareas follows.
Table7.Forecasting indexesofLS-SVR-CQFOAandothermodels for IDAS2014.
ComparedModels RMSE MAPE(%) MAE
BPNN 24.89 3.92 24.55
LS-SVR-CQPSO[36] 14.40 2.27 14.21
LS-SVR-CQTS[37] 14.50 2.26 14.24
LS-SVR-CQGA[38] 14.41 2.24 14.13
LS-SVR-CQBA[39] 14.45 2.25 14.18
LS-SVR-FOA 15.90 2.48 15.62
LS-SVR-QFOA 15.03 2.32 14.69
LS-SVR-CQFOA 14.10 2.21 13.88
Table8.Forecasting indexesofLS-SVR-CQFOAandothermodels forGEFCom2014(Jan.).
ComparedModels RMSE MAPE(%) MAE
BPNN 92.30 2.34 90.74
LS-SVR-CQPSO[36] 51.46 1.31 50.69
LS-SVR-CQTS[37] 50.85 1.27 49.70
LS-SVR-CQGA[38] 46.36 1.16 45.31
LS-SVR-CQBA[39] 42.76 1.07 41.80
LS-SVR-FOA 75.55 1.89 73.88
LS-SVR-QFOA 59.74 1.47 57.96
LS-SVR-CQFOA 40.62 1.02 39.76
Table9.Forecasting indexesofLS-SVR-CQFOAandothermodels forGEFCom2014(July).
ComparedModels RMSE MAPE(%) MAE
BPNN 88.24 2.31 85.51
LS-SVR-CQPSO[36] 51.03 1.33 49.35
LS-SVR-CQTS[37] 45.73 1.22 44.68
LS-SVR-CQGA[38] 46.18 1.19 44.46
LS-SVR-CQBA[39] 40.75 1.09 39.85
LS-SVR-FOA 72.00 1.88 69.69
LS-SVR-QFOA 56.33 1.49 54.81
LS-SVR-CQFOA 38.70 1.01 37.48
Finally, to test thesignificance in termsof forecastingaccuracy improvements fromtheproposed
LS-SVR-CQFOAmodel, theWilcoxon signed-rank test is conductedunder two significant levels,
α=0.025andα=0.05, byone-tail test. The test results for the IDAS2014, theGEFCom2014 (Jan.),
and the GEFCom2014 (July) datasets are described in Tables 10–12, respectively. In these three
tables, theresultsdemonstrate that theproposedLS-SVR-CQFOAmodelachievedsignificantlybetter
forecastingperformance than theotheralternativemodels. Forexample, in the IDAS2014dataset,
forLS-SVR-CQFOAvs. LS-SVR-CQPSO, the statistic ofWilcoxon test,W=72, is smaller than the
critical statistics,W**=81 (underα=0.025)andW*=91 (underα=0.05), thuswecouldconclude
that the proposedLS-SVR-CQFOAmodel is significantly outperform the LS-SVR-CQPSOmodel.
Inaddition, thep-value=0.022 isalsosmaller thanthecriticalα=0.025andα=0.05,whichsupport
theconclusion.
17
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik