Page - 33 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 33 -
Text of the Page - 33 -
Energies2018,11, 1009
3.2.4. ForecastingResultsandAnalysis forExample1
To compare the improved forecasting performance of the tent chaotic mapping function,
aSVRwith theoriginalCSalgorithm(without the tentchaoticmappingfunction),namely theSVRCS
model, will also be taken into comparison. Therefore, according to the rolling-based procedure
mentionedabove,byusingthe trainingdataset fromExample1 (mentionedinSection3.1) toconduct
the trainingwork, and theparameters forSVRCSandSVRCCSmodelsareeventuallydetermined.
These trainedmodelsare furtherusedtoforecast theelectric load. Then, the forecastingresultsandthe
suitableparametersofSVRCSandSVRCCSmodelsare listed inTable1. It is clearly indicatedthat the
proposedSVRCCSmodelhasachievedsmaller forecastingperformances in termsof the forecasting
accuracy indexes,MAPE,RMSE,andMAE.
Table 1. Three parameters of SVRCS and SVRwith chaotic cuckoo search (SVRCCS)models for
Example1.
EvolutionaryAlgorithms Parameters
MAPEofTesting(%) RMSEofTesting MAEofTesting
σ C ε
SVRCS 1.4744 17,877.54 0.3231 2.63 217.19 151.72
SVRCCS 0.5254 5,885.65 0.7358 1.51 126.92 87.94
AsshowninFigure3, theemployedelectric loaddatademonstratesseasonal/cyclic changing
tendency inExample1. Inaddition, thedata recording frequency isonahalf-hourbasis, therefore,
to comprehensively reveal the electric load changing tendency, the seasonal length is set as 48.
Therefore, thereare48seasonal indexes for theproposedSVRCCSandSVRCSmodels. Theseasonal
indexes for eachhalf-hour are computedbasedon the 576 forecastingvalues of the SVRCCSand
SVRCSmodels inthetraining(432forecastingvalues)andvalidation(144forecastingvalues)processes.
The48seasonal indexes for theSVRCCSandSVRCSmodelsare listed inTable2, respectively.
Table2.The48seasonal indexes forSVRCCSandSVRCSmodels forExample1.
Time
Points Seasonal Index(SI) Time
Points Seasonal Index(SI) Time
Points Seasonal Index(SI) Time
Points Seasonal Index(SI)
SVRCCS SVRCS SVRCCS SVRCS SVRCCS SVRCS SVRCCS SVRCS
00:00 0.9615 0.9201 06:00 1.0360 1.0536 12:00 1.0025 1.0076 18:00 1.0071 1.0176
00:30 0.9881 0.9241 06:30 1.0518 1.0729 12:30 0.9960 1.0032 18:30 1.0034 1.0109
01:00 0.9893 0.9401 07:00 1.0671 1.0924 13:00 0.9935 0.9992 19:00 0.9694 0.9767
01:30 0.9922 0.9729 07:30 1.0394 1.0810 13:30 0.9975 1.0022 19:30 0.9913 0.9875
02:00 0.9919 0.9955 08:00 1.0088 1.0575 14:00 1.0026 1.0083 20:00 0.9820 0.9812
02:30 0.9948 0.9980 08:30 1.0076 1.0322 14:30 1.0015 1.0088 20:30 0.9789 0.9700
03:00 0.9950 0.9998 09:00 1.0004 1.0148 15:00 1.0000 1.0070 21:00 0.9830 0.9641
03:30 0.9915 0.9961 09:30 0.9903 0.9982 15:30 1.0022 1.0089 21:30 0.9780 0.9547
04:00 1.0082 1.0129 10:00 1.0031 1.0067 16:00 1.0033 1.0115 22:00 0.9906 0.9622
04:30 1.0075 1.0176 10:30 0.9912 0.9981 16:30 1.0097 1.0173 22:30 0.9932 0.9778
05:00 1.0124 1.0245 11:00 0.9928 0.9973 17:00 1.0098 1.0188 23:00 0.9659 0.9645
05:30 1.0139 1.0253 11:30 0.9967 1.0025 17:30 1.0053 1.0164 23:00 0.9601 0.9348
The forecasting comparison curves of six models, including the SARIMA(9,1,8)×(4,1,4),
GRNN(σ = 0.04),SSVRCCS,SSVRCS,SVRCCS,andSVRCSmodelsmentionedaboveandactual
valuesareshowninFigure4. It illustrates that theproposedSSVRCCSmodel iscloser to theactual
electric loadvaluesthanothercomparedmodels. Tofurther illustratethetendencycapturingcapability
oftheproposedSSVRCCSmodelduringtheelectricpeakloads,Figures5–8areenlargementsfromfour
peaks inFigure4 toclearlydemonstratehowcloser theSSVRCCSmodelmatches to theactualelectric
loadvalues thanotheralternativemodels. Forexample, foreachpeak, the redreal line (SSVRCCS
model)always followscloselywith theblackreal line (actualelectric load),whetherclimbingupthe
peakorclimbingdownthehill.
33
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik