Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Page - 37 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 37 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Image of the Page - 37 -

Image of the Page - 37 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text of the Page - 37 -

Energies2018,11, 1009 Figure9.Theseasonal tendencyofactualhourlyelectric load inExample2. Table6.The24seasonal indexes forSVRCCSandSVRCSmodels forExample2. Time Points Seasonal Index(SI) Time Points Seasonal Index(SI) Time Points Seasonal Index(SI) Time Points Seasonal Index(SI) SVRCCS SVRCS SVRCCS SVRCS SVRCCS SVRCS SVRCCS SVRCS 00:00 0.9718 0.9317 06:00 1.0545 1.1043 12:00 0.9848 0.9911 18:00 0.9753 1.0242 01:00 0.9848 0.9670 07:00 1.0383 1.1133 13:00 0.9896 0.9959 19:00 0.9707 0.9743 02:00 0.9894 0.9960 08:00 0.9854 1.0833 14:00 0.9898 0.9960 20:00 0.9711 0.9754 03:00 0.9937 1.0001 09:00 0.9913 1.0259 15:00 0.9994 1.0058 21:00 0.9610 0.9674 04:00 1.0076 1.0140 10:00 0.9860 0.9951 16:00 1.0144 1.0208 22:00 0.9519 0.9435 05:00 1.0343 1.0407 11:00 0.9841 0.9903 17:00 1.0252 1.0441 23:00 0.9567 0.9245 Theforecastingcomparisoncurvesofsixmodels inExample2, includingSARIMA(9,1,10)×(4,1,4), GRNN(σ= 0.07), SSVRCCS,SSVRCS,SVRCCS, andSVRCSmodels andactualvaluesare shown as inFigure 10. It indicates that theproposedSSVRCCSmodel is closer to theactual electric load values than theother comparedmodels. Similarly, the enlargedfigures, Figures 11–14, fromeight peaks inFigure10areprovided todemonstrate the tendencycapturingcapabilityof theproposed SSVRCCSmodelandhowcloser theSSVRCCSmodelmatches theactual electric loadvalues than other alternativemodels. It is clear that for eachpeak, the red real line (SSVRCCSmodel) always followscloselywith theblackreal line (actualelectric load),whetherclimbingupthepeakorclimbing downthehill. 37
back to the  book Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Title
Short-Term Load Forecasting by Artificial Intelligent Technologies
Authors
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Editor
MDPI
Location
Basel
Date
2019
Language
English
License
CC BY 4.0
ISBN
978-3-03897-583-0
Size
17.0 x 24.4 cm
Pages
448
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies