Page - 40 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 40 -
Text of the Page - 40 -
Energies2018,11, 1009
Table8.ResultsofWilcoxonsigned-ranktestandFriedmantest forExample2.
ComparedModels WilcoxonSigned-RankTest FriedmanTest
α=0.025;
W=9264 p-Value α=0.05;
W=9264 p-Value α=0.05;
SSVRCCSvs.
SARIMA(9,1,10)×(4,1,4) 152a 0.00000** 152a 0.00000**
H0 : e1= e2= e3= e4= e5= e6
F=149.8006
p=0.0000 (RejectH0)
SSVRCCSvs.GRNN(σ=0.07) 396a 0.00000** 396a 0.00000**
SSVRCCSvs. SSVRCS 482a 0.00000** 482a 0.00000**
SSVRCCSvs. SVRCCS 745a 0.00000** 745a 0.00000**
SSVRCCSvs. SVRCS 5207a 0.00000** 5207a 0.00000**
aDenotes that theSSVRCCSmodelsignificantlyoutperformstheotheralternativecomparedmodels; * represents
that the test indicatesnot toaccept thenullhypothesisunderα=0.05. ** represents that the test indicatesnot to
accept thenullhypothesisunderα=0.025.
3.2.6.Discussions
TolearnabouttheeffectsofthetentchaoticmappingfunctioninbothExamples1and2,comparing
theforecastingperformances(thevaluesofMAPE,RMSE,andMAEinTables3and7)betweenSVRCS
andSVRCCSmodels, the forecastingaccuracyofSVRCCSmodel is superior to thatofSVRCSmodel.
It reveals that theCCSalgorithmcoulddeterminemoreappropriateparametercombinations foran
SVRmodelby introducingthe tentchaoticmappingfunctiontoenrich thecuckoosearchspaceand
thediversity of thepopulationwhen theCSalgorithm is going to be trapped in the local optima.
InExample1,asshowninTable1, theparametersearchingofanSVRmodelbyCCSalgorithmcould
bemoved to amuchbetter solution, (σ,C, ε) = (0.5254, 5885.65, 0.7358)with forecasting accuracy,
(MAPE,RMSE,MAE)= (1.51%, 126.92, 87.94) from the local solution, (σ,C, ε) = (1.4744, 17877.54,
0.3231)with forecastingaccuracy, (MAPE,RMSE,MAE)=(2.63%,217.19,151.72). It almost improves
1.12%(=2.63%−1.51%) forecastingaccuracy in termsofMAPEbyemployingTentchaoticmapping
function. The same inExample 2, as shown inTable 5, theCCSalgorithmalso helps to improve
theresultby1.12%(=3.42%−2.30%). These twoexamplesbothreveal thegreatcontributions from
the tent chaoticmapping function. In future research, itwouldbeworthapplyinganother chaotic
mappingfunctiontohelp toavoidtrapping into localoptima.
Furthermore, the seasonalmechanismcan successfully help todealwith the seasonal/cyclic
tendency changes of the electric load data to improve the forecasting accuracy, by determining
seasonal length and calculating associate seasonal indexes (per half-hour for Example 1, and
perhour forExample2) fromtrainingandvalidationstages for eachseasonalpoint. In thispaper,
authorshybridize theseasonalmechanismwithSVRCSandSVRCCSmodels,namelySSVRCSand
SSVRCCSmodels, respectively,byusingtheirassociateseasonal indexes,asshowninTables2and6,
respectively. Based on these seasonal indexes, the forecasting results (in terms ofMAPE) of the
SVRCSandSVRCCSmodels forExample1are further revised from2.63%and1.51%, respectively,
toachievemoreacceptable forecastingaccuracy,0.99%and0.70%,respectively. Theyalmost improve
1.64%(=2.63%−0.99%) and 0.81% (=1.51%− 0.70%) forecasting accuracy by applying seasonal
mechanism. The same inExample 2, as shown inTable 7, the seasonalmechanismalso improves
2.56%(=3.42%−0.86%)and1.84%(=2.30%−0.46%) forSVRCSandSVRCCSmodels, respectively.
Inthemeanwhile,basedonWilcoxonsigned-ranktestandFriedmantest,asshowninTables4and8for
Examples1and2, respectively, theSSVRCCSmodelsalsoachievestatistical significanceamongother
alternativemodels. Based on above discussions, this seasonalmechanism is also a considerable
contribution, and it is worth the time cost to deal with the seasonal/cyclic information during
modelingprocesses.
Therefore, it couldberemarkedthatbyhybridizingnovel intelligent technologies, suchaschaotic
mappingfunctions,advancedsearchingmechanism,seasonalmechanism,andsoon,toovercomesome
inherentdrawbacksof theexistingevolutionaryalgorithmscouldsignificantly improveforecasting
accuracy. Thiskindofresearchparadigmalso inspiressomeinterestingfutureresearch.
40
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik