Page - 41 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 41 -
Text of the Page - 41 -
Energies2018,11, 1009
4.Conclusions
ThispaperproposesanovelSVR-basedhybridelectric loadforecastingmodel,byhybridizing
theseasonalmechanism, the tentchaoticmappingfunction,andtheCSalgorithmwithanSVRmodel,
namelytheSSVRCCSmodel. Theexperimental results indicate that theproposedSSVRCCSmodel
significantlyoutperformsother alternative compared forecastingmodels. Thispaper continues to
overcomesomeinherentshortcomingsof theCSalgorithm,byactionssuchasenrichingthesearch
spaceandthediversityofthepopulationbyusingthetentchaoticmappingfunctiontoavoidpremature
convergenceproblemsandapplyingseasonalmechanismtoprovideusefuladjustmentscausedfrom
seasonal/cycliceffectsof theemployeddataset. Eventually, theproposedSSVRCCSmodelachieves
significantaccurate forecastingperformances.
Thispaperconcludessomeimportantfindings. Firstly,byapplyingappropriatechaoticmapping
functions it couldhelpempower thesearchvariables topossessergodicitycharacteristics, toenrich
the searching space, then, determinewell appropriate parameter combinations of an SVRmodel,
to eventually improve the forecasting accuracy. Therefore, any novel hybridizations of existed
evolutionary algorithmswith other optimizationmethods ormechanismswhich could consider
thoseactionsmentionedaboveduringmodelingprocessarealldeserving to takea trial toachieve
more interesting results. Secondly, only hybridizingdifferent single evolutionary algorithmwith
anSVRmodel could contributeminor forecastingaccuracy improvements. It ismoreworthwhile
tohybridizedifferentnovel intelligent technologieswithsingleevolutionaryalgorithmstoachieve
morehigh forecastingaccurate levels. This couldbean interesting future research tendency in the
SVR-basedelectric loadforecastingfield.
Acknowledgments: YongquanDong thanks the support from the project grants: NationalNatural Science
FoundationofChina(No. 61100167),NaturalScienceFoundationof JiangsuProvince,China(No.BK2011204),
andQingLanProject, theNationalTrainingProgramof InnovationandEntrepreneurshipforUndergraduates
(No. 201710320058);ZichenZhangthanks thesupport fromtheprojectgrant: PostgraduateResearch&Practice
InnovationProgramof JiangsuProvince (No. 2017YXJ214);Wei-ChiangHongthanks thesupport fromJiangsu
DistinguishedProfessorProjectbyJiangsuProvincialDepartmentofEducation.
AuthorContributions:YongquanDongandWei-ChiangHongconceived,designedtheexperiments,andwrote
thepaper;ZichenZhangcollectedthedata,performedandanalyzedtheexperiments.
Conflictsof Interest:Theauthorsdeclarenoconflictof interest.
References
1. Wan,C.; Zhao, J.;Member, S.; Song,Y. Photovoltaic and solar power forecasting for smart grid energy
management.CSEEJ.PowerEnergySyst. 2015,1, 38–46. [CrossRef]
2. Xiao,L.;Wang, J.;Hou,R.;Wu, J.Acombinedmodelbasedondatapre-analysisandweight coefficients
optimizationforelectrical loadforecasting.Energy2015,82, 524–549. [CrossRef]
3. Bunn,D.W.;Farmer,E.D.Comparativemodels forelectrical loadforecasting. Int. J. Forecast. 1986,2, 241–242.
4. Fan, G.; Peng, L.-L.; Hong,W.-C.; Sun, F. Electric load forecasting by the SVRmodelwith differential
empiricalmodedecompositionandautoregression.Neurocomputing2016,173, 958–970. [CrossRef]
5. Ju,F.-Y.;Hong,W.-C.ApplicationofseasonalSVRwithchaoticgravitational searchalgorithminelectricity
forecasting.Appl.Math.Model. 2013,37, 9643–9651. [CrossRef]
6. Hussain,A.;Rahman,M.;Memon, J.A.Forecastingelectricityconsumption inPakistan: Thewayforward.
EnergyPolicy2016,90, 73–80. [CrossRef]
7. Pappas, S.S.; Ekonomou, L.; Karampelas, P.; Karamousantas, D.C.; Katsikas, S.K.; Chatzarakis, G.E.;
Skafidas,P.D.Electricitydemand load forecastingof theHellenicpower systemusinganARMAmodel.
Electr. PowerSyst. Res. 2010,80, 256–264. [CrossRef]
8. Vu,D.H.;Muttaqi,K.M.;Agalgaonkar,A.P.Avariance inflation factor andbackwardeliminationbased
robust regressionmodel for forecastingmonthlyelectricitydemandusingclimaticvariables.Appl. Energy
2015,140, 385–394. [CrossRef]
9. Dudek,G.Pattern-basedlocal linearregressionmodels forshort-termloadforecasting.Electr. PowerSyst.Res.
2016,130, 139–147. [CrossRef]
41
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik