Page - 43 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 43 -
Text of the Page - 43 -
Energies2018,11, 1009
35. Dao,T.-P.;Huang,S.-C.;Thang,P.T.HybridTaguchi-cuckoosearchalgorithmforoptimizationofacompliant
focuspositioningplatform.Appl. SoftComput. 2017,57, 526–538. [CrossRef]
36. Puspaningrum,A.;Sarno,R.Ahybridcuckoooptimizationandharmonysearchalgorithmforsoftwarecost
estimation.ProcediaComput. Sci. 2017,124, 461–469. [CrossRef]
37. Huang,L.;Ding, S.; Yu, S.;Wang, J.; Lu,K.Chaos-enhancedCuckoosearchoptimizationalgorithms for
globaloptimization.Appl.Math.Model. 2016,40, 3860–3875. [CrossRef]
38. Li, X.; Yin, M. A particle swarm inspired cuckoo search algorithm for real parameter optimization.
SoftComput. 2016,20, 1389–1413. [CrossRef]
39. Sheng, Y.; Pan, H.; Xia, L.; Cai, Y.; Sun, X. Hybrid chaos particle swarm optimization algorithm and
application inbenzene-tolueneflashvaporization. J.ZhejiangUniv. Technol. 2010,38, 319–322.
40. Li,M.;Hong,W.-C.; Kang,H.Urban trafficflowforecastingusingGauss-SVRwith catmapping, cloud
modelandPSOhybridalgorithm.Neurocomputing2013,99, 230–240. [CrossRef]
41. Yang,X.S.;Deb,S.Cuckoosearch: Recentadvancesandapplications.NeuralComput.Appl. 2014,24, 169–174.
[CrossRef]
42. Koc,E.;Altinay,G.Ananalysisofseasonality inmonthlyperpersontourist spendinginTurkish inbound
tourismfromamarketsegmentationperspective.Tour.Manag. 2007,28, 227–237. [CrossRef]
43. Goh, C.; Law, R.Modeling and forecasting tourismdemand for arrivalswith stochastic nonstationary
seasonalityandintervention.Tour.Manag. 2002,23, 499–510. [CrossRef]
44. Wang, J.;Zhu,W.;Zhang,W.;Sun,D.Atrendfixedonfirstlyandseasonaladjustmentmodelcombinedwith
theε-SVRforshort-termforecastingofelectricitydemand.EnergyPolicy2009,37, 4901–4909. [CrossRef]
45. Martens,K.;Chang,Y.C.;Taylor,S.Acomparisonofseasonaladjustmentmethodswhenforecastingintraday
volatility. J.Financ. Res. 2002,25, 283–299. [CrossRef]
46. Deo,R.;Hurvich,C.;Lu,Y.Forecastingrealizedvolatilityusinga long-memorystochasticvolatilitymodel:
Estimation,predictionandseasonaladjustment. J.Econom. 2006,131, 29–58. [CrossRef]
47. The Electricity Demand Data of National Electricity Market. Available online: https://www.aemo.
com.au/Electricity/National-Electricity-Market-NEM/Data-dashboard#aggregated-data (accessed on
2March2018).
48. The Electricity Demand Data of the New York Independent System Operator (NYISO). Available
online: http://www.nyiso.com/public/markets_operations/market_data/load_data/index.jsp (accessed
on2April2018).
49. Schalkoff,R.J.ArtificialNeuralNetworks;McGraw-Hill:NewYork,USA,1997.
50. Diebold,F.X.;Mariano,R.S.Comparingpredictiveaccuracy. J.Bus. Ecosn. Stat. 1995,13, 134–144.
51. Derrac, J.;García,S.;Molina,D.;Herrera,F.Apractical tutorialontheuseofnonparametric statistical tests
asamethodologyforcomparingevolutionaryandswarmintelligencealgorithms.SwarmEvolut. Comput.
2011,1, 3–18. [CrossRef]
52. Wilcoxon,F. Individualcomparisonsbyrankingmethods.Biom.Bull. 1945,1, 80–83. [CrossRef]
53. Friedman,M.Acomparisonofalternativetestsofsignificancefortheproblemofmrankings.Ann.Math. Stat.
1940,11, 86–92. [CrossRef]
©2018bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticle isanopenaccess
articledistributedunder the termsandconditionsof theCreativeCommonsAttribution
(CCBY) license (http://creativecommons.org/licenses/by/4.0/).
43
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik