Page - 51 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 51 -
Text of the Page - 51 -
Energies2019,12, 164
3.TheProposedForecastStrategy
ANNsarewidely used as forecasters because these networks canpredict the non-linearities
ofSGs’ loadwith lowconvergence time. However, sometimes theachievedpredictionaccuracy is
notupto themark. Thus, leading to theadoptionofoptimization techniques that cansignificantly
enhancethepredictionaccuracyofANNs.However, thecostpaidtoachievehighaccuracyis increased
convergence time. Therefore,weaimtowards thedevelopmentof anewDALFstrategyusing the
conceptofhybrid integrationsubject to: (i) improvementofpredictionaccuracy;and(ii) reductionof
convergence time.
OurproposedDALFstrategyisimplementedinthreeinterconnectedmodules: (i)apre-processing
module; (ii) a forecast module; and (iii) an optimization module. Given the input data, the
pre-processingmoduleremovesredundantandirrelevantsamples fromthe inputdata.Usingsigmoid
activationfunctionandMARA,thehybridANN-basedforecastmodulepredicts theDALofanSG.
Finally, theoptimizationmoduleminimizespredictionerrors to improveaccuracyof theoverallDALF
strategy. Blockdiagramof theproposedmodel is shown inFigure3. Detaileddescriptionof each
module isas follows.
Figure3.Blockdiagramof theproposedmodularapproachforanhour.
3.1. Pre-ProcessingModule
SincetheANN-basedforecasterpredicts loadofthenextday, theinputdatamustbepre-processed
subject toremovalof redundantandirrelevantsamplesdueto tworeasons: (i) redundant featuresdo
notprovidemore informationandthusunnecessarily increase theexecutiontimeduringthe training
process (will be laterdiscussed in the forecastmodule); and (ii) irrelevant featuresdonotprovide
useful informationandactasoutliers.Detaileddescriptionof thepre-processormodule isas follows.
Asmentionedearlier, thedatapreparationmodulereceives the input load-timeseries (historical).
Suppose, following is the input loaddata:
P= ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ p(h1,d1) p(h2,d1) p(h3,d1) . . . p(hm,d1)
p(h1,d2) p(h2,d2) p(h3,d2) . . . p(hm,d2)
p(h1,d3) p(h2,d3) p(h3,d3) . . . p(hm,d3)
p(h1,d4) p(h2,d4) p(h3,d4) . . . p(hm,d4)
p(h1,d5) p(h2,d5) p(h3,d5) . . . p(hm,d5)
... ... ... ... ...
p(h1,dn) p(h2,dn) p(h3,dn) . . . p(hm,dn) ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)
where,dn is thenthday,hm is themthhourof theday,and p(hm,dn) ispowerusagevalueof theof the
nthdayat themthhour. Similarly,wehave inputdewpoint temperaturedata inamatrixTDP, input
drybulb temperaturedata inamatrixTDB, andthe input typeofday(workingdayorholiday)data
inamatrixDT. Choosingn is totallydependentonthechoiceofdesigner.Greatervalueofnmeans
51
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik