Page - 54 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 54 -
Text of the Page - 54 -
Energies2019,12, 164
Figure4.Supervised learningof theANN.
Forasetoffinite input-targetpairs,once theweightsareadaptivelyadjustedasperMARA[43],
the forecastmodule returns the forecast error signal;meanabsolutepercentage error‘MAPE(i) =
1
m ∑ m
j=1 |pa(i,j)−pf(i,j)|
pa(i,j) ’, to theoptimizationmodule.Where p a(i, j) is theactual loadvalueand pf(i, j) is
theforecastedloadvalue. Stepwiseoperationsof theproposedforecastmoduleareshowninFigure5a.
! "
# $
% '
'
(
(a)Forecastmodule !"# $ $
!"# $
$ $
$ $ $
%& ' ( )
$ $
%& '*( )
+ %& ',(
- . / $$
%& '0(
! .
$
1
2
3
5
(b)Optimizationmodule
Figure5.Flowchartsofourmodularapproach.
3.3.OptimizationModule
Basedonthenatureof theoverall forecast strategy, thebasicobjectiveofoptimizationmodule is
tominimize the forecasterror,EF(.),
minimize
Ith,Rth MAPE(i) (4)
where i ∈ [1,m], Ith and Rth represent thresholds for irrelevancy and redundancy, respectively.
Optimizationmodulegives Ith’sandRth’soptimizedvalues to theMI-basedfeatureselectionmodule
54
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik