Page - 55 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 55 -
Text of the Page - 55 -
Energies2019,12, 164
whichuses these thresholdvalues for featureselection. For thispurpose,variouschoicesareavailable
suchas linearprogramming,non-linearprogramming,quadraticprogramming,convexoptimization,
heuristic optimization, etc. However, the first one is not applicable here because the problem is
highlynon-linear. Thenon-linearproblemcanbeconverted intoa linearone;however, theoverall
processwouldbecomeverycomplex. Thesecondone isapplicablehereandgivesaccurate results
bypayingexecution time’s cost. Similarly, the thirdandfourthonessuffer fromslowconvergence
time. It isworthmentioninghere that optimizationdoesnot implyexact reachability tooptimum
setof solutions, rather,nearoptimalsolution(s) is(are)obtained. Tosumup,heuristicoptimization
techniquesarepreferred in thesesituationsbecause theseprovidenearoptimalsolution(s) inrelatively
lessexecutiontime.
DEisoneof theheuristicoptimizationtechniquesproposedin[45]anditsenhancedversion is
usedfor forecasterrorminimization in [28]. In thispaper,wemodify theEDEalgorithmfor thesake
accuracy improvement. Thus, in theupcomingparagraphs,detaileddiscussion ispresented.
Accordingto [28], ingeneration t, the jth trialvectory for ith individual isgivenas:
y ′t
i,j= {
uti,j if rnd(j)≤FFN(Uti)
xti,j if rnd(j)>FFN(U t
i) (5)
where, xti,j and u t
i,j are the correspondingparent andmutant vectors, respectively. In (5), FFN(.)
denotes thefitness function(0<FFN(.)<1)andRand(j)∈ [0,1] isarandomnumbercomplyingto
uniformdistribution. BetweenXti andY t
i , thecorrespondingoffspringof thenextgenerationX (t+1)
i is
selectedas follows:
yti,j= {
y ′t
i,j ifMAPE(y ′t
i )≤EF(xti)
xti,j otherwise (6)
where,MAPE(.) is theobjective function. From(5)and(6), it is clear thatoffspringselectiondepends
onthe trialvectorwhich in turndependsontherandomnumberandthefitness function. Fromthis
discussion,we conclude that the selected offspring is not the fittest. Tomake the fittest one, our
approacheliminates thechancesofoffspringselectionunder the influenceof randomnumber, i.e.,we
modify (5)as follows:
y ′t
i,j= ⎧⎪⎨⎪⎩ uti,j if Xti
Xtimax <FFN(Uti)
xti,j if Xti
Xtimax ≥FFN(Uti) (7)
From(7), it is clear that the trial vectorno longerdependson the randomnumber instead its
dependence innowtotallyonthemutantvectorwhichinturndependsontheparentvector.Offspring
selectionby thismethodwill ensure selectionof thefittest ones subject to accuracy improvement.
Stepwiseoperationsof theoptimizationmoduleareshowninFigure5b.
4. SimulationResults
Forevaluationofourproposedmodel,weconductsimulations. Forsimulations,wehaveused
MATLABinstalledonIntel(R)Core(TM) i3-2370MCPU@2.4GHzand2GBRAMwithWindows7.
TheproposedMI+ANN+mEDE-basedforecastmodel iscomparedwith twoexistingDALFmodels:
MI+ANNforecast [27], andbi-level forecast [28]. For simulationpurpose, traces of real timedata
forDAYTOWNandEKPC(the twoUSAgrids)are taken fromPJMelectricitymarket. Thisdata is
freelyavailableat [46].WehaveusedJanuary–December2014 loadvalues for trainingtheANN,and
January–December2015data for testingtheANN.Followingare thesimulationparameters thatare
usedinourexperiments(refertoTable2). Justificationoftheseparameterscanbefoundin[27,28,42,43].
55
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik