Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Page - 62 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 62 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Image of the Page - 62 -

Image of the Page - 62 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text of the Page - 62 -

Energies2019,12, 164 Author Contributions: Conceptualization, A.A.; Formal analysis, A.M. and M.A.; Investigation, A.A.; Methodology,A.A.andN.J.; Software,A.A.;Supervision,N.J.;Validation,N.J.,A.M.andM.A.;Writing—original draft,A.A.;Writing—review&editing,N.J. andZ.A.K. Funding:This researchreceivednoexternal funding. Conflictsof Interest:Theauthorsdeclarenoconflictsof interest. Nomenclature SG Smartgrid DAL Day-aheadload DALF Day-aheadloadforecast(ing) AN Artificialneuron ANN Artificialneuralnetwork MARA Multivariateautoregressivealgorithm ARMA Autoregressiveandmovingaverage EDE Enhanceddifferentialevolutionalgorithm mEDE ModifiedversionofEDEalgorithm NIST National instituteofstandardsandtechnology MSE Minimumsquareerror P Historical loaddatamatrix TDP Historicaldewpoint temperaturedatamatrix TDB Historicalboilingpoint temperaturedatamatrix DTYP Historicaldewpoint temperaturedatamatrix phm,dn Loadvalueatmthhourof thenthday pcimax LocalmaximaforeachcolumnofP Pnrm LocallynormalizedP TDP,nrm LocallynormalizedTDP TDB,nrm LocallynormalizedTDB MI(K,G) Relativemutual informationbetweeninputKandtargetG pr(K,G) JointprobabilitybetweenKandG pr(K) IndividualprobabilityofK Sf Selectedfeatures ST Trainingsamples SV Validationsamples MAPE Meanabsolutepercentageerror pa Actual load pf Forecasted load Ith Irrelevancythresholdvalue Rth Redundancythresholdvalue y ′t i,j jth trialvectory ′ for ith individual ingeneration t xti,j jthparentvectorx for ith individual ingeneration t uti,j jthmutantvectoru for ith individual ingeneration t yti,j jthoffspringvectory for ith individual ingeneration t rnd Randomnumber FFN(.) Fitness function EF Forecasterror References 1. Gelazanskas,L.;Gamage,K.A.Demandsidemanagement insmartgrid:Areviewandproposals for future direction.Sustain. CitiesSoc. 2014,11, 22–30. [CrossRef] 2. Yan,Y.;Qian,Y.; Sharif,H.;Tipper,D.ASurveyonSmartGridCommunicationInfrastructures:Motivations, RequirementsandChallenges. IEEECommun. Surv. Tutor. 2013,15, 5–20. [CrossRef] 62
back to the  book Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Title
Short-Term Load Forecasting by Artificial Intelligent Technologies
Authors
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Editor
MDPI
Location
Basel
Date
2019
Language
English
License
CC BY 4.0
ISBN
978-3-03897-583-0
Size
17.0 x 24.4 cm
Pages
448
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies