Page - 70 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 70 -
Text of the Page - 70 -
Energies2018,11, 3433
Internet-of-Things,andhighperformancesmartcomputing[37–39].Oneof themostefficientdeep
learningprocesses isRNN.
RNNsare fundamentallydifferent fromtraditional feed-forwardneuralnetworks;RNNshave
a tendency to retain informationacquired through subsequent time-stamps. This characteristic of
RNNsisuseful for loadforecasting. EventhoughRNNshavegoodapproximationcapabilities, they
arenotfit tohandle long-termdependenciesofdata. Learning long-rangedependencieswithRNNs
ischallengingbecauseof thevanishinggradientproblem.The increase in thenumberof layersand
the longerpaths to thepastcause thevanishinggradientproblembecauseof theback-propagation
algorithm,which has the verydesirable characteristic of being veryflexible, although causes the
vanishinggradientproblem[30,32–34].
3.1. LongShort-TermMemoryNeuralNetworks
Thelong-short termmemorynetworkhasbeenemployedtoapproachthebestperformanceof
state-of-the-artRNNs. Theproblemof thevanishinggradient is solvedbyreplacingnodes in theRNN
withmemorycellsandagatingmechanism. Figure2showstheLSTMblockstructure. Theoverall
support inacell isprovidedbythreegates. Thememorycell state st−1 interactswith the intermediate
output ht−1. The sub-sequent input xt determineswhether to remember or forget the cell state.
The forgetgate ftdetermines the input for thecell state st−1 using thesigmoidfunction. The input
gate it, inputnodegt, andoutputnodeotdetermine thevalues tobeupdatedbyeachweightmatrix,
whereσ represents thesigmoidactivationfunction,whileφ represents the tanhfunction. Theweight
matrices in theLSTMnetworkmodelaredeterminedbytheback-propagationalgorithm[37–42].
TheLSTMhasbecomethestate-of-the-artRNNmodel foravarietyofdeep learningtechniques.
Severalvariantsof theLSTMmodel for recurrentneuralnetworkshavebeenproposed.VariantLSTM
models havebeenproposed to improveperformanceby solving issues suchas computation time
andthemodelcomplexityof thestandardLSTMstructure.Amongthevariants, theGRUmaintains
performancebysimplifyingthestructurewithanupdategate that iscoupledwithaninputgateand
forgetgate. Thestructureof theGRUisadvantageousfor forecasting ina large-scalegrid toreduce
calculation time[42]. In [45],variantsof theLSTMarchitectureweredesignedandtheirperformances
werecomparedthroughimplementation. Theresults revealedthatnoneof thevariantsofLSTMcould
improveuponthestandardLSTM.Inotherwords,aclearwinnercouldnotbedeclared. Therefore,
thepopularLSTMnetworksareusedin this study[45,46].
Figure2.Thestructureof theLSTM.
3.2.NonlinearAutoregressiveNetworkwithExogenous Inputs
NARXRNNsandLSTMsolve thevanishinggradientproblemwithdifferentmechanisms.NARX
RNNsallowdelays fromthedistantpast layer,but this structure increasescomputationtimeandhasa
smalleffectonlong-termdependencies. TheLSTMsolves thevanishinggradientproblembyreplacing
nodes in theRNNwithmemorycellsandagatingmechanism[36].
70
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik