Page - 77 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 77 -
Text of the Page - 77 -
Energies2018,11, 3433
TheMAPEofVMD-LSTMwasaround2%. In theweeklycomparison, the leasterroroccurredon
Tuesday:RMSEof6.49kWh,MAEof3.98kWh,andMAPEof1.48%.Thiswasbecause thecorrelation
betweendaysof theweekwasthehighestonTuesday.Ontheotherhand, therewasa largeerroron
WednesdayandFridaybecause thecorrelationwasrelatively lower thanonotherdaysof theweek.
TheproposedVMD-LSTMreflecting themixedperiodic pattern of the loadprofile basedon
multi-decompositionwithdeeplearninghadthe lowesterror.
6.3. Benchmark forDifferentPredictionTimeScales
Finally, in this section,weanalyze theaccuracyof the loadforecastingmethods for thecasestudy
consideringdifferentprediction timescales (5m,1h,3h,24h,48h,72h). Theaccuracyresultsare
summarized inTable2. Thebestaccuracieswereobtainedfor theshortestpredictiontimescale (5m)
forallmodels. Theproposedmodel,VMD-LSTM,showedthebestaccuracywithanMAEof1.95kWh,
RMSEof4.28kWh,andMAPEof0.71%.
Inaddition, EMD-LSTMandVMD-LSTMshowedbetter accuracyon thepreviousdaywhen
compared to the36stepsahead(3h)andoneday to threedaysahead(24h,48h,72h) timescales.
The24h,48h,and72hcasesshowthatRNN-basedmodelshadhigheraccuracies thanARIMAor
GPR,buteventuallyshowedsimilarerrors,andtheirperformancesweresaturated. This resultwas
obtainedbecausethereferenceloadprofilewaslearnedasadominantinputaccordingtotheprediction
timescale toreflect thepowerconsumption trend, so the288stepsaheadcaseand576stepsahead
case,whichhadsimilarpatterns,wereslightlymoreaccurate thanthe36stepsaheadcase (3h).
Table2.Loadforecastingerrorsofdifferentmodels.
Prediction
Horizon Index ARIMA GPR SVR NARX EMD
NARX VMD
NARX LSTM EMD
LSTM VMD
LSTM
1step
ahead
(5min) MAE 7.45 6.03 3.43 7.52 7.33 3.25 2.92 5.53 1.95
RMSE 11.77 10.21 6.89 11.89 11.21 6.62 4.98 8.72 4.28
MAPE(%) 3.46 2.67 1.96 3.61 3.39 1.84 1.12 2.21 0.71
12steps
ahead
(1h) MAE 17.28 16.11 14.76 17.71 17.02 15.12 9.01 11.69 4.81
RMSE 22.12 20.94 20.12 24.12 22.49 19.31 12.87 15.08 7.53
MAPE(%) 6.20 6.06 5.70 6.35 6.27 5.43 3.54 4.27 1.90
36steps
ahead
(3h) MAE 57.14 53.96 48.72 58.85 56.54 50.69 30.25 38.52 16.27
RMSE 64.50 61.35 59.31 70.64 66.80 56.38 38.05 43.66 22.40
MAPE(%) 20.62 19.91 18.17 21.79 20.97 20.03 11.63 14.26 6.01
288steps
ahead
(24h) MAE 51.22 48.55 43.25 52.68 51.50 45.12 28.19 32.65 15.60
RMSE 59.38 58.81 56.88 58.12 57.24 56.85 35.98 37.38 21.80
MAPE(%) 18.90 17.91 16.13 19.16 19.06 16.71 10.62 11.78 5.75
576steps
ahead
(48h) MAE 57.24 52.87 46.57 57.48 55.65 48.23 28.60 32.48 15.85
RMSE 63.28 60.31 59.72 62.51 61.49 57.53 36.24 42.27 22.11
MAPE(%) 22.08 19.72 17.76 21.49 20.99 17.18 10.92 12.18 5.89
864steps
ahead
(72h) MAE 60.45 58.55 51.92 59.75 59.01 53.44 29.12 34.37 16.09
RMSE 68.24 62.42 58.35 67.38 66.26 58.72 36.85 43.52 22.18
MAPE(%) 24.14 21.76 18.72 22.43 21.19 19.05 11.05 12.86 5.96
7.Conclusions
This paper proposes short-term load forecasting using deep learning based on
multi-decomposition. The results of the proposed approach were validated by applications
to real-worlddata fromabusiness building, and theperformance of theproposed approachwas
assessedbycomparingthepredictedresultswith thoseofothermodels.
Tomonitor small-scale loadanddemand sidemanagement, an enhancedAMI that provides
three-timesmore sample data points per hour than conventional AMIwas used, increasing the
accuracyof the loadforecastingusingdeeplearning. In thisstudy, todetect the featuresof the load
77
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik