Page - 78 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 78 -
Text of the Page - 78 -
Energies2018,11, 3433
profile, the loadprofilewasdecomposedbyaweeklyseasonalityandvariationalmodedecomposition.
Twodecompositionmethodscan identify featuressuchasseasonality, load increase/decreasepattern,
andperiodicitywithoutanyexternaldata, suchas temperature.
Thethree-stepregularizationprocessreducedthelong-termdependency,overfitting,andcovariate
shiftproblemcausedby featuredecomposition,which increases thedata samplesanddimensions.
The results also reveal the effectivenessof the long short-termmemoryneural networksbasedon
variationalmodedecompositionwithdifferentpredictiontimescales.Weexpect theproposedmethod
tobeakeytechniquefordemandsidemanagement,electricalpower theftdetection,energystorage
systemscheduling,andenergytradingplatforms in futuresmartgrids.
AuthorContributions: S.H.K.developed themain ideaanddesigned theproposedmodel; he conducted the
simulation studies andwrote the paperwith the support of G.L. andG.-Y.K. under the supervision of the
correspondingauthor,Y.-J.S.D.-I.K. contributedto theeditingof thepaper.Allauthorshavereadandapproved
thefinalmanuscript.
Acknowledgments:ThisworkwassupportedbyaNationalResearchFoundationofKorea (NRF)grant funded
bytheMinistryofScience, ICT&FuturePlanning(No.NRF-2017R1A2A1A05001022)andthe frameworkof the
internationalcooperationprogrammanagedbytheNRFofKorea (No.NRF-2017K1A4A3013579). This research
wasalsosupportedbytheKoreaElectricPowerCorporation(KEPCO)(No.R18XA05).
Conflictsof Interest:Theauthorsdeclarenoconflictsof interest.
Nomenclature
AMI advancedmeasuring infrastructure
ANN artificialneuralnetwork
LSTM longshort-termmemory
EMD empiricalmodedecomposition
VMD variationalmodedecomposition
LTLF long-termloadforecasting
MTLF medium-termloadforecasting
STLF short-termloadforecasting
USTLF ultra-short-termloadforecasting
DSM demandsidemanagement
ARIMA auto-regressive integratedmovingaverage
GPR Gaussianprocessingregression
GRU gatedrecurrentunit
SVR supportvector regression
RNN recurrentneuralnetwork
NARX nonlinearautoregressiveexogenous
CNN convolutionalneuralnetwork
IMFs intrinsicmodefunctions
k themodeindex
vk kth intrinsicmode
Wp(t) pthweekly loadprofile
w frequencyofmode
K the totalnumberofmodes
xt the typical loadprofile
xpt the load p thweeklyseasonality feature
xpk,t k th IMFof the load pthweeklyseasonality feature
δ theDiracdistribution
Dp theweeklydecay’sexponent factor
Nk the IMFnormalizationfactor
BN batchnormalization
st thememorycell stateofLSTM
ft the forgetgateofLSTM
78
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik