Page - 79 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 79 -
Text of the Page - 79 -
Energies2018,11, 3433
it the inputgateofLSTM
gt the inputnodeofLSTM
ot theoutputgateofLSTM
ht theoutputvalueofLSTM
RMSE rootmeansquarederror
MAE meanabsoluteerror
MAPE meanabsolutepercenterror
VMF variationalmodefunction
EMF empiricalmodefunction
References
1. Ekonomou,L.;Christodoulou,C.A.;Mladenov,V.Ashort-term load forecastingmethodusingartificial
neuralnetworksandwaveletanalysis. Int. J.PowerSyst. 2016,1, 64–68.
2. Mirowski, P.; Chen, S.; Ho, T.K.; Yu, C.-N.Demand forecasting in smart grids. Bell Syst. Tech. J. 2014,
18, 135–158. [CrossRef]
3. Zhang,X.Short-termloadforecastingforelectricbuschargingstationsbasedonfuzzyclusteringandleast
squaressupportvectormachineoptimizedbywolfpackalgorithm.Energies2018,11, 1449. [CrossRef]
4. Fiot, J.-B.;Dinuzzo,F.Electricitydemandforecastingbymulti-task learning. IEEETrans. SmartGrid2018,
9, 544–551. [CrossRef]
5. Dahl,M.;Brun,A.;Kirsebom,O.;Andresen,G. Improvingshort-termheat loadforecastswithcalendarand
holidaydata.Energies2018,11, 1678. [CrossRef]
6. Teeraratkul,T.;O’Neill,D.;Lall, S.Shape-basedapproachtohouseholdelectric loadcurveclusteringand
prediction. IEEETrans. SmartGrid2018,9, 5196–5206. [CrossRef]
7. Wang,Y.;Zhang,N.;Chen,Q.;Kirschen,D.S.;Li,P.;Xia,Q.Data-drivenprobabilisticnet loadforecasting
withhighpenetrationofbehind-the-meterpv. IEEETrans. PowerSyst. 2018,33, 3255–3264. [CrossRef]
8. Haben,S.; Singleton,C.;Grindrod,P.Analysisandclusteringof residential customersenergybehavioral
demandusingsmartmeterdata. IEEETrans. SmartGrid2016,7, 136–144. [CrossRef]
9. Stephen,B.;Tang,X.;Harvey,P.R.;Galloway,S.; Jennett,K.I. Incorporatingpractice theory insub-profile
models for short termaggregatedresidential load forecasting. IEEETrans. SmartGrid2017,8, 1591–1598.
[CrossRef]
10. Hayes,B.P.;Gruber, J.K.;Prodanovic,M.Multi-nodal short-termenergyforecastingusingsmartmeterdata.
IETGener. Transm.Dis. 2018,12, 2988–2994. [CrossRef]
11. Xie, J.;Chen,Y.;Hong,T.;Laing,T.D.Relativehumidity for loadforecastingmodels. IEEETrans. SmartGrid
2018,9, 191–198. [CrossRef]
12. Xie, J.;Hong,T.Temperaturescenariogenerationforprobabilistic loadforecasting. IEEETrans. SmartGrid
2018,9, 1680–1687. [CrossRef]
13. Li,P.;Zhang, J.;Li,C.;Zhou,B.;Zhang,Y.;Zhu,M.;Li,N.Dynamicsimilarsub-seriesselectionmethodfor
timeseries forecasting. IEEEAccess2018,6, 32532–32542. [CrossRef]
14. Lin,L.;Xue,L.;Hu,Z.;Huang,N.Modularpredictor forday-aheadloadforecastingandfeatureselection
fordifferenthours.Energies2018,11, 1899. [CrossRef]
15. Xie, J.;Hong,T.Variableselectionmethods forprobabilistic loadforecasting: Empiricalevidence fromseven
statesof theunitedstates. IEEETrans. SmartGrid2018,9, 6039–6046. [CrossRef]
16. Li, B.; Zhang, J.; He, Y.;Wang,Y. Short-term load-forecastingmethodbasedonwavelet decomposition
withsecond-ordergrayneuralnetworkmodelcombinedwithadf test. IEEEAccess2017,5, 16324–16331.
[CrossRef]
17. Rafiei,M.;Niknam,T.;Aghaei, J.; Shafie-khah,M.;Catalão, J.P.S.Probabilistic load forecastingusingan
improvedwaveletneuralnetworktrainedbygeneralizedextremelearningmachine. IEEETrans. SmartGrid
2018,9, 6961–6971. [CrossRef]
18. Auder,B.;Cugliari, J.;Goude,Y.;Poggi, J.-M.Scalableclusteringof individualelectrical curves forprofiling
andbottom-upforecasting.Energies2018,11, 1893. [CrossRef]
19. Qiu,X.;Ren,Y.; Suganthan,P.N.;Amaratunga,G.A.J.Empiricalmodedecompositionbasedensembledeep
learningfor loaddemandtimeseries forecasting.Appl. SoftComput. 2017,54, 246–255. [CrossRef]
79
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik