Page - 80 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 80 -
Text of the Page - 80 -
Energies2018,11, 3433
20. Bedi, J.;Toshniwal,D.Empiricalmodedecompositionbaseddeeplearningforelectricitydemandforecasting.
IEEEAccess2018,6, 49144â49156. [CrossRef]
21. Liu,H.;Mi,X.; Li,Y.Anexperimental investigationof threenewhybridwindspeed forecastingmodels
usingmulti-decomposingstrategyandelmalgorithm.Renew. Energy2018,123, 694â705. [CrossRef]
22. Lahmiri, S.Comparingvariational andempiricalmodedecomposition in forecastingday-aheadenergy
prices. IEEESyst. J.2017,11, 1907â1910. [CrossRef]
23. Dragomiretskiy,K.;Zosso,D.Variationalmodedecomposition. IEEETrans. SignalProcess. 2014,62, 531â544.
[CrossRef]
24. Huang,N.;Yuan,C.;Cai,G.;Xing,E.Hybridshort termwindspeedforecastingusingvariationalmode
decompositionandaweightedregularizedextremelearningmachine.Energies2016,9, 989. [CrossRef]
25. Lin,Y.;Luo,H.;Wang,D.;Guo,H.;Zhu,K.Anensemblemodelbasedonmachine learningmethodsand
datapreprocessingforshort-termelectric loadforecasting.Energies2017,10, 1186. [CrossRef]
26. Ruiz-AbellĂłn,M.;GabaldĂłn,A.;GuillamĂłn,A.Loadforecastingforacampusuniversityusingensemble
methodsbasedonregressiontrees.Energies2018,11, 2038. [CrossRef]
27. Dong,Y.;Zhang,Z.;Hong,W.-C.Ahybridseasonalmechanismwithachaoticcuckoosearchalgorithmwith
asupportvector regressionmodel forelectric loadforecasting.Energies2018,11, 1009. [CrossRef]
28. Li,M.-W.;Geng, J.;Hong,W.-C.; Zhang,Y.Hybridizing chaotic andquantummechanismsand fruitïŹy
optimization algorithmwith least squares support vector regressionmodel in electric load forecasting.
Energies2018,11, 2226. [CrossRef]
29. Sheng,H.; Xiao, J.; Cheng, Y.; Ni, Q.;Wang, S. Short-term solar power forecasting based onweighted
gaussianprocess regression. IEEETrans. Ind. Electron. 2018,65, 300â308. [CrossRef]
30. Manic, M.; Amarasinghe, K.; Rodriguez-Andina, J.J.; Rieger, C. Intelligent buildings of the future:
Cyberaware, deep learningpowered, andhuman interacting. IEEE Ind. Electron. Mag. 2016, 10, 32â49.
[CrossRef]
31. Li, C.; Ding, Z.; Yi, J.; Lv, Y.; Zhang, G.Deep belief network based hybridmodel for building energy
consumptionprediction.Energies2018,11, 242. [CrossRef]
32. Wang,Y.;Zhang,N.;Tan,Y.;Hong,T.;Kirschen,D.S.;Kang,C.Combiningprobabilistic loadforecasts. IEEETrans.
SmartGrid2018.Availableonline: https://arxiv.org/abs/1803.06730(accessedon5November2018).
33. Wang, J.;Gao,Y.;Chen,X.Anovelhybrid intervalpredictionapproachbasedonmodiïŹed lowerupper
boundestimation incombinationwithmulti-objectivesalpswarmalgorithmforshort-termloadforecasting.
Energies2018,11, 1561. [CrossRef]
34. Sun,W.;Zhang,C.Ahybridba-elmmodelbasedonfactoranalysisandsimilar-dayapproachforshort-term
loadforecasting.Energies2018,11, 1282. [CrossRef]
35. Ruiz,L.G.B.;Cuéllar,M.P.;Calvo-Flores,M.D.; Jiménez,M.D.C.P.Anapplicationofnon-linearautoregressive
neuralnetworks topredictenergyconsumption inpublicbuildings.Energies2016,9, 684. [CrossRef]
36. DiPietro,R.;Rupprecht,C.;Navab,N.;Hager,G.D.Analyzingandexploitingnarxrecurrentneuralnetworks
for long-termdependencies. arXiv2017, arXiv:1702.07805.
37. Bouktif, S.;Fiaz,A.;Ouni,A.;Serhani,M.Optimaldeep learning lstmmodel forelectric loadforecasting
usingfeatureselectionandgeneticalgorithm:Comparisonwithmachine learningapproaches.Energies2018,
11, 1636. [CrossRef]
38. Kong,W.;Dong,Z.Y.; Jia,Y.;Hill,D.J.;Xu,Y.;Zhang,Y.Short-termresidential loadforecastingbasedonlstm
recurrentneuralnetwork. IEEETrans. SmartGrid2018. [CrossRef]
39. Chen,K.;Chen,K.;Wang,Q.;He,Z.;Hu, J.;He, J. Short-termloadforecastingwithdeepresidualnetworks.
IEEETrans.SmartGrid2018.Availableonline: https://arxiv.org/abs/1805.11956(accessedon5November2018).
40. Shi,H.;Xu,M.;Li,R.Deeplearningforhousehold loadforecastingâAnovelpoolingdeeprnn. IEEETrans.
SmartGrid2018,9, 5271â5280. [CrossRef]
41. Kuo, P.-H.; Huang, C.-J. A high precision artiïŹcial neural networksmodel for short-term energy load
forecasting.Energies2018,11, 213. [CrossRef]
42. Wang,Y.;Liu,M.;Bao,Z.;Zhang,S.Short-termloadforecastingwithmulti-sourcedatausinggatedrecurrent
unitneuralnetworks.Energies2018,11, 1138. [CrossRef]
43. Merkel,G.;Povinelli,R.;Brown,R.Short-termloadforecastingofnaturalgaswithdeepneuralnetwork
regression.Energies2018,11, 2008. [CrossRef]
80
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik