Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Page - 110 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 110 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Image of the Page - 110 -

Image of the Page - 110 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text of the Page - 110 -

Energies2018,11, 3442 3.4.1. TimeSeriesModeler—ExpertModel (SectorWise) In the expert time seriesmodeler it automatically assigns themodel best suitedbasedon the system’sexpertise. For the industrial, agriculturalanddomestic sectors ithasassignedBrown’smodel andit is foundtobe theappropriatemodel. For thecommercial, tractionandothers’ sector, theexpert model has assignedARIMA(0,1,0)model; ARIMA(2,1,0)model andARIMA(0,1,0) respectively, automaticallyas theappropriatemodelsas inTable6. Therespectivedegreesof freedomandother parametersareshowninTable7. Table6.SummaryofExpertmodel. ModelID ModelType Industry Brown Agriculture Brown Domestic Brown Commercial ARIMA(0,1,0) TractionRailways ARIMA(2,1,0) Others ARIMA(0,1,0) Table7.Summaryof themodel. Model Statistics Ljung-Box No. ofOutliers StationaryR2 Statistics DF Sig. Industry 0.281 3.802 17 1.00 0 Agriculture 0.080 49.040 17 0.000 0 Domestic 0.432 6.242 17 0.991 0 Commercial 1.102×10−15 10.125 18 0.928 0 Traction/Railways 0.331 15.057 17 591 0 Others 5.310×10−16 20.114 18 0.326 0 3.4.2.Holt’sModel-ExponentialSmoothingwithTrend SeveralmodelssuchasBrown’smodel,Holt’smodel,Expertmodelanddampedtrendmodel wereanalysed.Andtheanalysisof theHolt’smodel is shownintheTable8. Table8.SummaryofHolt’smodel. Model Statistics Ljung-Box No. ofOutliers StationaryR2 Statistics DF Sig. Industry 0.291 2.371 16 1.00 0 Agriculture 0.103 43.582 16 0.000 0 Domestic 0.447 6.536 16 0.981 0 Commercial 0.422 3.726 16 0.999 0 Traction/Railways 0.394 35.017 16 0.004 0 Others 0.434 19.379 16 0.250 0 TEC 0.069 14.250 16 0.580 0 3.4.3. TimeSeriesModeler (ExponentialSmoothing-Brown) Theanalysisof theBrownmodel is shownintheTable9. 110
back to the  book Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Title
Short-Term Load Forecasting by Artificial Intelligent Technologies
Authors
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Editor
MDPI
Location
Basel
Date
2019
Language
English
License
CC BY 4.0
ISBN
978-3-03897-583-0
Size
17.0 x 24.4 cm
Pages
448
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies