Page - 111 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 111 -
Text of the Page - 111 -
Energies2018,11, 3442
Table9.SummaryofBrownmodel.
Model Statistics Ljung-Box No. ofOutliers
StationaryR2 Statistics DF Sig.
Industry 0.281 3.802 17 1.00 0
Agriculture 0.80 49.040 17 0.000 0
Domestic 0.432 6.242 17 0.991 0
Commercial 0.421 3.999 17 0.999 0
Traction/Railways 0.393 33.210 17 0.011 0
Others 0.411 23.559 17 0.132 0
TEC 0.067 14.569 17 0.627 0
3.4.4. Timeseriesmodeler (ExponentialSmoothingâDampedTrend)
TheTECfor theyears2019,2024and2030were forecastedtobe1,162,453MW,1,442,410MWand
1,778,358MWrespectively.
RMSE= â
{ÎŁ (YactualâYforecast)/N}
TheExpertmodel selectsdifferentmodelson itsownfordifferentvariablesandproduces the
abovementionedforecastbymeansofa lowrootmeansquareerrorvalue,RMSEof10,734.649anda
R2valueof0.997which iscomparativelyhigh.Andtheanalysisof theDampedtrendmodel is shown
intheTable10.
Table10.SummaryofDampedtrendmodel.
Model Statistics Ljung-Box No. ofOutliers
StationaryR2 Statistics DF Sig.
Industry 0.392 2.365 15 1.00 0.392
Agriculture 0.337 44.861 15 0.000 0.337
Domestic 0.570 6.543 15 0.969 0
Commercial 0.467 3.720 15 0.999 0
Traction/Railways 0.114 34.625 15 0.003 0
Others 0.062 19.223 15 0.204 0
TEC 0.760 14.245 15 0.507 0
TheforecastedvaluesareshowninTable11 for theabovementionedyears.
Table11.Summaryof theresultsandTimeline forecastedvalues for2030.
Sector Model 2019 2024 2030
Industry Brown 538,089 686,457 864,498
Agriculture Brown 208,891 258,836 318,770
Domestic Brown 259,381 321,054 395,062
Commercial ARIMA 115,130 172,213 279,201
Traction/Railways ARIMA 20,554 26,906 465,523
Others ARIMA 68,072 100,343 37,404
TEC Brown 1,162,453 1,442,410 1,778,358
3.5.MovingAverage
Thethreeyearsâ fouryearsâandďŹveyearsâmovingaveragefor the timeperiodof1974â2014 is
computedhereandshowninFigure9. Thevalueswere foundtobe830,696,796,620and759,825MW
respectively for theyear2014.
111
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik