Page - 112 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 112 -
Text of the Page - 112 -
Energies2018,11, 3442
Ϭ
ϭϬϬϬϬϬ
ϮϬϬϬϬϬ
ϯϬϬϬϬϬ
ϰϬϬϬϬϬ
ϱϬϬϬϬϬ
ϲϬϬϬϬϬ
ϳϬϬϬϬϬ
ϴϬϬϬϬϬ
ϵϬϬϬϬϬ
&ŽƌĞĐĂƐƚ ϯD &ŽƌĞĐĂƐƚ ϰD &ŽƌĞĐĂƐƚ ϱD dŽƚĂů ůĞĐƚƌŝĐŝƚLJ ŽŶƐƵŵĞĚ
Figure9.Chart formovingaveragemethod(1971–2014).
Movingaverage isonemethodwhich isverymuchsuitable forshort-termloadforecasting,STLF.
Theforecastof the fourthyear is theaverageof thefirst threeyearsandsoon.
3.6.WeightedMovingAverage
The three years’ and four years’weightedmoving average for the time period 1971–2015 is
calculatedhere. Thevalueswere foundtobe786,587.1and765,421.5MWrespectively for theyear
2015 inFigure10.
Ϭ
ϭϬϬϬϬϬ
ϮϬϬϬϬϬ
ϯϬϬϬϬϬ
ϰϬϬϬϬϬ
ϱϬϬϬϬϬ
ϲϬϬϬϬϬ
ϳϬϬϬϬϬ
ϴϬϬϬϬϬ
ϵϬϬϬϬϬ
&ŽƌĞĐĂƐƚ ϯD &ŽƌĞĐĂƐƚ ϰD &ŽƌĞĐĂƐƚ ϱD dŽƚĂů ůĞĐƚƌŝĐŝƚLJ ŽŶƐƵŵĞĚ
Figure10.Chart forWeightedmovingaveragemethod(1971–2015).
For the threeyearsweightedmovingaveragetheαvaluefor theprevious threeyearswere0.5,
0.3and0.2respectively. Thehigherαvalue isallottedto the immediatemonthsince it influences the
outcomemore thanthatof thepreviousvalues. For the fouryearsweightedmovingaverage theα
value for theprevious fouryearsassignedwere0.4,0.3,0.2and0.1respectively. It ismadesure that
theαvaluesaddupto1.
112
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik