Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Page - 117 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 117 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Image of the Page - 117 -

Image of the Page - 117 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text of the Page - 117 -

Energies2018,11, 3442 19. Tsekouras,G.J.;Dialynas,E.N.;Hatziargyriou,N.D.;Kavatza,S.Anon-linearmultivariableregressionmodel formidtermenergyforecastingofpowersystems.Electr. PowerSyst. Res. 2007,77, 1560–1568. [CrossRef] 20. Persaud, J.;Kumar,U.Aneclecticapproach inenergyforecasting:AcaseofNaturalResourcesCanada’soil andgasoutlook.EnergyPolicy2001,29, 303–313. [CrossRef] 21. Edigera,V.S.;Akarb,S.ARIMAforecastingofprimaryenergydemandbyfuel inTurkey.EnergyPolicy2007, 35, 1701–1708. [CrossRef] 22. Xie,N.-M.;Yuan,C.-Q.; Yang,Y.-J. ForecastingChina’s energydemandandself-sufficiency ratebygrey forecastingmodelandMarkovmodel.Elect. PowerEnergySyst. 2015,66, 1–8. [CrossRef] 23. Bassam,M.;Al-Foul,A.ForecastingEnergyDemandinJordanUsingArtificialNeuralNetworks.Top.Middle East.Afr. Econ. 2012,14, 473. 24. Kankal, M.; Akpınar, A.; Komurcu, M.I.; Ozsahin, T.S. Modeling and forecasting of Turkey’s energy consumptionusingsocio-economicanddemographicvariables.Appl. Energy2011,88, 1927–1939. [CrossRef] 25. Hyndman,R.J.; Fan,S.DensityForecasting forLong-Term-PeakElectricityDemand. IEEETrans. PowerSyst. 2010,25, 1142–1153. [CrossRef] 26. Pławiak,P.NovelGeneticEnsemblesofClassifiersAppliedtoMyocardiumDysfunctionRecognitionBased onECGSignals.SwarmEvol.Comput. 2018,39, 192–208. [CrossRef] 27. Pławiak,P.;Rzecki,K.ApproximationofPhenolConcentrationusingComputational IntelligenceMethods BasedonSignals fromtheMetalOxideSensorArray. IEEESens. J.2015,15, 1770–1783. 28. Mallah,S.;Bansal,N.K.Allocationofenergyresources forpowergeneration in India: Businessasusualand energyefficiency.EnergyPolicy2010,38, 1059–1066. [CrossRef] 29. Li,C.;Ding,Z.; Zhao,D.; Yi, J.; Zhang,G.BuildingEnergyConsumptionPrediction: AnExtremeDeep LearningApproach.Energies2017,10, 1–20. [CrossRef] 30. Bianco,V.;Manca,O.;Nardini,S.Electricityconsumptionforecasting in Italyusing linear regressionmodels. Energy2009,34, 1413–1421. [CrossRef] 31. Erdogdu,E.Electricitydemandanalysisusingco-integrationandARIMAmodeling:AcasestudyofTurkey. EnergyPolicy2007,35, 1129–1146. [CrossRef] 32. Gajowniczek,K.;Nafkha,R.; Za˛bkowski, T. Electricitypeakdemandclassificationwith artificial neural networks.Ann.Comput. Sci. Inf. Syst. 2017,11, 307–315. 33. Singh, S.; Yassine, A. Big Data Mining of Energy Time Series for Behavioral Analytics and Energy ConsumptionForecasting.Energies2018,11, 452. [CrossRef] 34. Energy Statistics 2018; Central Statistics Office, Ministry of Statistics and Programme Implementation, Governmentof India:NewDelhi, India,2018. 35. RobertMason,L.;RichardGunst,F.; JamesHess,L.StatisticalDesignandAnalysis ofExperiments; JohnWiley &SonsPublication:NewYork,NY,USA,2003. 36. Hanief,M.;Wani,M.F.;Charoo,M.S.Modelingandpredictionofcuttingforcesduringthe turningofred brass (C23000)usingANNandregressionanalysis.Eng. Sci. Technol. Int. J.2017,20, 1220–1226. [CrossRef] 37. Iniyan,S.; Suganthi,L.; Jagadeesan,T.R.;Samuel,A.A.Reliabilitybasedsocioeconomicoptimal renewable energymodel for India.Renew. Energy2000,19, 291–297. [CrossRef] 38. Suganthi,L.;Williams,A.Renewableenergy in India—Amodellingstudyfor2020–2021.EnergyPolicy2000, 28, 1095–1109. [CrossRef] 39. Suganthi,L.; Samuel,A.A.Energymodels fordemandforecasting—Areview.Renew. Sus. EnergyRev. 2012, 16, 1223–1240. [CrossRef] 40. Venkatesan,G.;Kulasekharan,N.;Muthukumar,V.; Iniyan,S.Regressionanalysisofacurvedvanedemister withTaguchibasedoptimization.Desalination2015,370, 33–43. [CrossRef] 41. TERI.National EnergyMap for India: TechnologyVision 2030: Summary for Policy-Makers; TheEnergyand Resources InstituteTERI&Office of thePrincipal ScientificAdviser,Government of India: NewDelhi, India,2015. 42. Gokarn,S.; Sajjanhar,A.;Sandhu,R.;Dubey,S.Energy2030;Brookings InstitutionIndiaCenter:NewDelhi, India,2013. 43. TheEconomicTimes.Availableonline: https://economictimes.indiatimes.com/industry/energy/power/ indias-electricity-consumption-to-touch-4-trillion-units-by-2030/articleshow/52221341.cms(accessedon 21November2018). 117
back to the  book Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Title
Short-Term Load Forecasting by Artificial Intelligent Technologies
Authors
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Editor
MDPI
Location
Basel
Date
2019
Language
English
License
CC BY 4.0
ISBN
978-3-03897-583-0
Size
17.0 x 24.4 cm
Pages
448
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies