Page - 128 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 128 -
Text of the Page - 128 -
Energies2018,11, 3283
Table2.Statisticsofpowerconsumptiondata.
Statistics Cluster#
ClusterA ClusterB ClusterC
Numberofvalidcases 1826 1826 1826
Mean 63,094.97 68,860.93 30,472.31
Variance 246,836,473 269,528,278 32,820,509
Standarddeviation 15,711.03 16,417.31 5728.92
Maximum 100,222.56 109,595.52 46,641.6
Minimum 23,617.92 26,417.76 14,330.88
Lowerquartile 52,202.4 56,678.88 26,288.82
Median 63,946.32 66,996.72 30,343.14
Upperquartile 76,386.24 79,209.96 34,719.45
5.2. ForecastingModelConfiguration
In this study, we used the LSTMnetworksmethod to show the repeating pattern of power
consumptions depending on the day of theweek. We tested diverse cases and investigated the
accuracyof loadforecasting for the test cases todetermine thebest inputdataselection. Asshown
in Figure 4, the input variables consist of four electrical loads fromoneweek ago to fourweeks
ago as apart at aweekly interval to reflect the cycle of onemonth. In the feature scalingprocess,
werescaled the rangeof themeasuredvalues from0 to1.Weused tanhas theactivation function
andcalculatedthe lossbyusingthemeanabsoluteerror.Weusedtheadaptivemomentestimation
(Adam)method,whichcombinesmomentumandrootmeansquarepropagation(RMSProp),as the
optimizationmethod. TheAdamoptimizationtechniqueweighsthetimeseriesdataandmaintainsthe
relativesizedifferencebetweenthevariables. In theconfigurationof theremaininghyper-parameters
of themodel,weset thenumberofhiddenunits to60,epochs to300,andbatchsize to12.
Figure4.SystemarchitectureofLSTMnetworks.
We experimentedwith the LSTMmodel [52] by changing the time step fromone cycle to a
maximumof30cycles. Table3showsthemeanabsolutepercentageerror (MAPE)ofeachcluster for
eachtimestep. In the table, thepredictedresultswith thebestaccuracyaremarkedinbold. Table3
shows that the 27th time step indicates themost accuratepredictionperformance. Ingeneral, the
electricitydemandisrelativelyhigh insummerandwinter, comparedto that inspringandautumn.
Inotherwords, ithasariseandfall curve inahalf-yearcycle,andthe27th timestepcorresponds toa
weeknumberofabouthalfayear.
Weperformedsimilara timeseriespatternanalysisbasedonthedecisiontree through10-fold
cross-validation for the trainingset. Amongseveraloptionsprovidedbyscikit-learn toconstructa
decisiontree,weconsideredthecriterion,maxdepth,andmaxfeatures. Thecriterion isa functionfor
measuringthequalityofasplit. In thispaper,weusethe“mae”criterionforour forecastingmodel
since itgives thesmallesterrorratebetweentheactualandtheclassificationvalue.Maxdepth is the
maximumdepthof the tree.Wesetmaxdepthto3, suchthat thenumberof leaves is8. Inotherwords,
thedecision tree classifies the trainingdatasets into eight similar timeseries. Max features are the
numberof features to considerwhen looking for thebest split. Wehavechosen the“auto”option
128
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik