Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Page - 129 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 129 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Image of the Page - 129 -

Image of the Page - 129 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text of the Page - 129 -

Energies2018,11, 3283 to reflectall timevariables. Figure5showstheresultof thesimilar timeseries recognition foreach clusterusing thedecision tree. Here, samples indicate thenumberof tuples ineach leaf. The total numberof samples is 1095, sinceweare considering thedaily consumptiondataover threeyears. Valuedenotes theclassificationvalueof thesimilar timeseries. Table4showsthenumberofsimilar timeseriessamplesaccordingto thedecisiontree for2016and2017. Table3.MAPEresultsofLSTMnetworks. TimeStep ClusterA ClusterB ClusterC Average 1 9.587 6.989 6.834 7.803 2 9.169 6.839 6.626 7.545 3 8.820 6.812 6.463 7.365 4 8.773 6.750 6.328 7.284 5 8.686 6.626 6.191 7.168 6 8.403 6.695 5.995 7.031 7 8.405 6.700 6.104 7.070 8 8.263 6.406 5.846 6.839 9 8.260 6.583 5.648 6.830 10 8.286 6.318 5.524 6.709 11 8.095 6.438 5.666 6.733 12 8.133 6.469 5.917 6.840 13 7.715 6.346 5.699 6.587 14 7.770 6.263 5.399 6.477 15 7.751 6.139 5.306 6.399 16 7.561 5.974 5.315 6.283 17 7.411 5.891 5.450 6.251 18 7.364 6.063 5.398 6.275 19 7.466 6.089 5.639 6.398 20 7.510 5.892 5.627 6.343 21 7.763 5.977 5.451 6.397 22 7.385 5.856 5.460 6.234 23 7.431 5.795 5.756 6.327 24 7.870 6.089 5.600 6.520 25 7.352 5.923 5.370 6.215 26 7.335 5.997 5.285 6.206 27 7.405 5.479 5.371 6.085 28 7.422 5.853 5.128 6.134 29 7.553 5.979 5.567 6.366 30 7.569 5.601 5.574 6.248 Table4.Similar timeseriespatterns. Pattern ClusterA ClusterB ClusterC 2016 2017 2016 2017 2016 2017 1 62 62 62 62 62 62 2 14 14 14 14 140 138 3 107 111 107 111 20 20 4 64 58 64 58 25 25 5 14 15 14 15 1 2 6 53 52 53 52 10 9 7 16 16 5 5 99 98 8 36 37 47 48 9 11 Total 366 365 366 365 366 365 Thepredictiveevaluationconsistsof twosteps. Basedontheforecastmodelsof randomforest andMLP,weused the trainingset from2013 to2015andpredicted theverificationperiodof2016. Theobjectivesare todetectmodelswithoptimalhyper-parametersandthentoselectmodelswitha betterpredictiveperformance insimilar timeseries.Next,weset the trainingset to includedata from 2013to2016andpredictedthe testperiodof2017.Here,weevaluate thepredictiveperformanceof the 129
back to the  book Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Title
Short-Term Load Forecasting by Artificial Intelligent Technologies
Authors
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Editor
MDPI
Location
Basel
Date
2019
Language
English
License
CC BY 4.0
ISBN
978-3-03897-583-0
Size
17.0 x 24.4 cm
Pages
448
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies