Page - 133 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 133 -
Text of the Page - 133 -
Energies2018,11, 3283
5.3. ComparisonofForecastingTechniques
Toverifythevalidnessandapplicabilityofourhybriddaily loadforecastingmodel, thepredictive
performanceofourmodel shouldbecomparedwithothermachine learning techniques, including
ANNandSVR,whichareverypopularpredictivetechniques[6]. Inthiscomparison,weconsidereight
models, includingourmodel, as showninTable9. In the table,GBM(GradientBoostingMachine) isa
typeofensemble learning technique that implements thesequentialboostingalgorithm.Agridsearch
canbeused tofindoptimalhyper-parametervalues for theSVR/GBM[25]. SNN(ShallowNeural
Network)has three layersof input,hidden,andoutput,anditwas foundthat theoptimalnumberof
thehiddennodes isnine forall clusters.
Tables9–11comparethepredictionperformanceintermsofMAPE,RMSE,andMAE,respectively.
Fromthetables, thepredictedresultswith thebestaccuracyaremarkedinboldandweobserve that
ourhybridmodelexhibitsasuperbperformance inall categories. Figure7showsmoredetailof the
MAPEdistributionforeachclusterusingaboxplot.Wecandeduce thatourhybridmodelhas fewer
outliersandasmallermaximumerror. Inaddition, theerror rate increases in thecaseof longholidays
inKorea. For instance,duringthe10-dayholiday inOctober2017, theerror rate increasedsignificantly.
Anothercauseofhigherrorrates isduetooutliersormissingvaluesbecauseofdiversereasons, such
asmalfunctionandsurge. Figure8compares thedaily loadforecastsofourhybridmodelandactual
dailyusageonaquarterlybasis.Overall,ourhybridmodelshowedagoodperformanceinpredictions,
regardlessofdiverseexternal factorssuchas longholidays.
Table9.MAPEdistributionforeachforecastingmodel.
ForecastingModel Cluster#
ClusterA ClusterB ClusterC
MR 7.852 8.971 4.445
DT 6.536 8.683 6.004
GBM 4.831 6.896 3.920
SVR 4.071 5.761 3.135
SNN 4.054 5.948 3.181
MLP 3.961 4.872 3.139
RF 4.185 5.641 3.216
RF+MLP 3.798 4.674 2.946
Table10.RMSEcomparisonforeachforecastingmodel.
ForecastingModel Cluster#
ClusterA ClusterB ClusterC
MR 5725.064 6847.179 1757.463
DT 6118.835 7475.188 2351.676
GBM 4162.359 5759.276 1495.751
SVR 3401.812 5702.405 1220.052
SNN 3456.156 4903.587 1236.606
MLP 3381.697 4064.559 1170.824
RF 4111.245 4675.762 1450.436
RF+MLP 3353.639 3894.495 1143.297
Nevertheless,wecansee that thereare several timeperiodswhen forecastingerrors arehigh.
For instance, from2013to2016,ClusterBshowedasteadyincrease in itspowerconsumptiondueto
buildingremodelingandconstruction. Eventhoughtheremodelingandconstructionarefinishedat
thebeginningof2017, the inputvariable forestimatingtheyear-aheadconsumption isstill reflecting
such an increase. Thiswas eventually adjustedproperly for the third and fourth quarters by the
timeseriescross-validation.Ontheotherhand,duringtheremodeling, theoldheating,ventilation,
andairconditioning(HVAC)systemwasreplacedbyamuchmoreefficientoneandthenewsystem
started itsoperation inDecember2017. Eventhoughourhybridmodelpredictedmuchhigherpower
consumptionfor thecoldweather in the thirdweek, theactualpowerconsumptionwasquite lowdue
133
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik