Page - 136 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 136 -
Text of the Page - 136 -
Energies2018,11, 3283
cluster, anddormitorycluster, andcollectedtheirdailyelectrical loaddataoversixyears.Wedivided
thecollecteddata intoa trainingset, avalidationset, andatest set. For the trainingset,weclassified
electrical loaddatabypattern similarityusing thedecision tree technique. Weconsideredvarious
configurationsforrandomforestandmultilayerperceptronandevaluatedtheirpredictionperformance
byusingthevalidationset toselect theoptimalmodel. Basedonthiswork,weconstructedourhybrid
dailyelectrical loadforecastmodelbyselectingmodelswithabetterpredictiveperformance insimilar
timeseries. Finally,using the test set,wecomparedthedailyelectrical loadpredictionperformanceof
ourhybridmodelandotherpopularmodels. Thecomparisonresults showthatourhybridmodel
outperformsotherpopularmodels. Inconclusion,weshowedthatLSTMnetworksareeffective for
reflectinganelectrical loaddependingon thedayof theweekand thedecision tree is effective in
classifyingtimeseriesdatabysimilarity.Moreover,usingthese twoforecastingmodels inahybrid
modelcancomplement theirweaknesses.
In order to improve the accuracy of electrical load prediction, we plan to use a supervised
learningmethodreflectingvariousstatisticallysignificantdata.Also,wewillanalyze theprediction
performanceindifferentlook-aheadpoints(fromthenextdaytoaweek)usingprobabilisticforecasting.
AuthorContributions: J.M.designedthealgorithm,performedthesimulations,andpreparedthemanuscript
as thefirstauthor.Y.K.analyzedthedataandvisualizedtheexperimental results.M.S. collectedthedata,and
developedandwrote the loadforecastingbasedontheLSTMnetworkspart. E.H.conceivedandsupervisedthe
work.Allauthorsdiscussedthesimulationresultsandapprovedthepublication.
Funding:This researchwassupportedbyKoreaElectricPowerCorporation(Grantnumber:R18XA05)andthe
BrainKorea21PlusProject in2018.
Conflictsof Interest:Theauthorsdeclarenoconflictof interest.
References
1. Lindley,D.Smartgrids: Theenergystorageproblem.Nat.News2010,463, 18–20. [CrossRef] [PubMed]
2. Erol-Kantarci,M.;Mouftah,H.T.Energy-efficient informationandcommunication infrastructures in the
smartgrid:Asurveyoninteractionsandopenissues. IEEECommun.Surv.Tutor.2015,17, 179–197. [CrossRef]
3. Raza,M.Q.;Khosravi,A.Areviewonartificial intelligencebasedloaddemandforecastingtechniques for
smartgridandbuildings.Renew. Sustain. EnergyRev. 2015,50, 1352–1372. [CrossRef]
4. Hernandez, L.; Baladron,C.; Aguiar, J.M.; Carro, B.; Sanchez-Esguevillas,A.J.; Lloret, J.;Massana, J.A
surveyonelectricpowerdemandforecasting: Future trends insmartgrids,microgridsandsmartbuildings.
IEEECommun. Surv. Tutor. 2014,16, 1460–1495. [CrossRef]
5. Kuo,P.-H.;Huang,C.-J.AHighPrecisionArtificialNeuralNetworksModel forShort-TermEnergyLoad
Forecasting.Energies2018,11, 213. [CrossRef]
6. Ahmad,A.; Hassan,M.; Abdullah,M.; Rahman,H.; Hussin, F.; Abdullah,H.; Saidur, R.A reviewon
applications ofANNandSVMfor building electrical energy consumption forecasting. Renew. Sustain.
EnergyRev. 2014,33, 102–109. [CrossRef]
7. Vrablecová,P.;Ezzeddine,A.B.;Rozinajová,V.;Šárik,S.; Sangaiah,A.K.Smartgrid loadforecastingusing
onlinesupportvector regression.Comput. Electr. Eng. 2017,65, 102–117. [CrossRef]
8. Hong,T.;Fan,S.Probabilisticelectric loadforecasting:Atutorial review. Int. J.Forecast. 2016,32, 914–938.
[CrossRef]
9. Hahn,H.;Meyer-Nieberg,S.;Pickl,S.Electric loadforecastingmethods: Tools fordecisionmaking.Eur. J.
Oper. Res. 2009,199, 902–907. [CrossRef]
10. Moon, J.; Park, J.;Hwang,E.; Jun,S.Forecastingpowerconsumption forhighereducational institutions
basedonmachine learning. J.Supercomput. 2018,74, 3778–3800. [CrossRef]
11. Chung,M.H.;Rhee,E.K.Potentialopportunities forenergyconservation inexistingbuildingsonuniversity
campus:Afieldsurvey inKorea.EnergyBuild. 2014,78, 176–182. [CrossRef]
12. Moon, J.;Kim,K.-H.;Kim,Y.;Hwang,E.AShort-TermElectricLoadForecastingSchemeUsing2-Stage
PredictiveAnalytics. InProceedingsof theIEEEInternationalConferenceonBigDataandSmartComputing
(BigComp),Shanghai,China,15–17 January2018;pp.219–226.
136
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik