Page - 138 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 138 -
Text of the Page - 138 -
Energies2018,11, 3283
37. Kanai,S.;Fujiwara,Y.; Iwamura,S.PreventingGradientExplosionsinGatedRecurrentUnits. InProceedings
of theNeural InformationProcessingSystems,LongBeach,CA,USA,4–9December2017;pp.435–444.
38. Cho,K.;vanMerriënboer,B.;Gulcehre,C.;Bahdanau,D.;Bougares,F.;Schwenk,H.;Bengio,Y.Learning
phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014,
arXiv:1406.1078.
39. Hochreiter, S.; Schmidhuber, J. Longshort-termmemory. NeuralComput. 1997,9, 1735–1780. [CrossRef]
[PubMed]
40. Rutkowski,L.; Jaworski,M.;Pietruczuk,L.;Duda,P.TheCARTdecisiontree forminingdatastreams. Inf.
Sci. 2014,266, 1–15. [CrossRef]
41. Breiman,L.Randomforests.Mach. Learn. 2001,45, 5–32. [CrossRef]
42. Oshiro, T.M.; Perez, P.S.; Baranauskas, J.A.Howmany trees in a random forest? InProceedings of the
InternationalConferenceonMachineLearningandDataMining inPatternRecognition,Berlin,Germany,
13–20 July2012;pp.154–168.
43. Díaz-Uriarte,R.;DeAndres,S.A.Geneselectionandclassificationofmicroarraydatausingrandomforest.
BMCBioinform. 2006,7, 3. [CrossRef] [PubMed]
44. Suliman,A.; Zhang,Y.AReviewonBack-PropagationNeuralNetworks in theApplication ofRemote
SensingImageClassification. J.EarthSci. Eng. (JEASE)2015,5, 52–65. [CrossRef]
45. Bengio,Y.Learningdeeparchitectures forAI.Found. Trends®Mach. Learn. 2009,2, 1–127. [CrossRef]
46. Clevert,D.-A.;Unterthiner,T.;Hochreiter,S.Fastandaccuratedeepnetwork learningbyexponential linear
units (elus). arXiv2015, arXiv:1511.07289.
47. Sheela, K.G.; Deepa, S.N. Review on methods to fix number of hidden neurons in neural networks.
Math.Probl. Eng. 2013, 425740. [CrossRef]
48. Xu,S.;Chen,L.Anovelapproachfordeterminingtheoptimalnumberofhiddenlayerneurons forFNN’s
and its application in datamining. In Proceedings of the 5th InternationalConference on Information
TechnologyandApplication(ICITA),Cairns,Australia, 23–26 June2008;pp.683–686.
49. Hyndman,R.J.;Athanasopoulos,G.Forecasting: Principles andPractice;Otexts:Melbourne,Australia, 2014;
ISBN0987507117.
50. Pedregosa,F.;Varoquaux,G.;Gramfort,A.;Michel,V.;Thirion,B.;Grisel,O.;Blondel,M.;Prettenhofer,P.;
Weiss,R.;Dubourg,V.Scikit-learn:Machine learning inPython. J.Mach. Learn.Res. 2011,12, 2825–2830.
51. Abadi,M.;Barham,P.;Chen, J.;Chen,Z.;Davis,A.;Dean, J.;Devin,M.;Ghemawat,S.; Irving,G.; Isard,M.
TensorFlow:ASystemforLarge-ScaleMachineLearning. InProceedingsof the12thUSENIXSymposium
onOperatingSystemsDesignandImplementation(OSDI ’16),Savannah,GA,USA,2–4November2016;
pp.265–283.
52. Ketkar,N. IntroductiontoKeras. InDeepLearningwithPython;Apress: Berkeley,CA,USA,2017;pp.97–111.
©2018bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticle isanopenaccess
articledistributedunder the termsandconditionsof theCreativeCommonsAttribution
(CCBY) license (http://creativecommons.org/licenses/by/4.0/).
138
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik