Page - 142 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 142 -
Text of the Page - 142 -
Energies2018,11, 2080
2.1.1.Auto-RegressiveModel
The auto-regressive model is actually an auto-regressive model with errors that includes
exogenous variables. Regressionmodelswith time series errors describe the behavior of a series
byaccountingfor lineareffectsofexogenousvariables.However, theerrorsarenotconsideredwhite
noisebuta timeseries. This typeofmodel isdescribed inEquation(1).
yt= p
∑
i=1 ϕi·et−i+Xt·θ+εt (1)
where, theoutputyt is expressedasa linearcombinationofpreviousknownerrors, et-i, exogenous
variablesXtandarandomshock, εt. Thecoefficientsϕiandvectorθarecalculatedfromthetraining
databyamaximumlikelihoodmethod. Theparameterpexpresses thenumberof lagsof theerror that
are includedin themodel.
2.1.2.NeuralNetwork
TheNeuralNetworkmodel uses a non-linear auto-regressive systemwith exogenous input.
mathematicallyexpressed inEquation(2):
yt= f (
yt−1,, . . . ,yt−ny,ut−1,, . . . ,ut−nu )
(2)
where, theoutputvalueyt isanon-linearfunctionofnypreviousoutputsandnu inputs. Thisnon-linear
function is, inourcase,a feedforwardneuralnetwork. Furtherdescriptionof thismodelcanbefound
in [39]. Figure 1 showsavisualizationof this typeofnetworksworkingonline. Thefigure shows
a feedforward neural networkwith 119 exogenous inputs and a feedback of 14 previous values,
10neurons in thehiddenlayerand1output.
Therandomnatureof the trainingprocessof theNARXsystemsrequirescertainredundancyto
estabilize theoutput. This isachievedbyusinganumberNNinparallel.Also, theabilityof theNNto
capturenon-linearbehaviordependsonthesizeof thehiddenlayer. Bothof theseparametersaffect
thecomputationalburden imposedon thesystem,which isoneof theconditionsunderwhich the
modelsare tested.
Figure1.Schematicviewof theNARXsystemasshownonaMatlabMathworksvisualization.
2.2. ParametersandForecastingConditions
Theforecastingenginesdescribedabovehavebeentestedwithdifferentconfigurationparameters
andexternalconditions todeterminehowtheyadapt todifferentsituations. Externalconditionsare
historical loadavailability, temperature locationsavailabilityandresponse timeliness,which is related
tocomputationalburden.Configurationparametersare temperature treatment, frequencyof training
andnumberofauto-regressive lags.
142
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik