Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Informatik
Short-Term Load Forecasting by Artificial Intelligent Technologies
Page - 142 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 142 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Image of the Page - 142 -

Image of the Page - 142 - in Short-Term Load Forecasting by Artificial Intelligent Technologies

Text of the Page - 142 -

Energies2018,11, 2080 2.1.1.Auto-RegressiveModel The auto-regressive model is actually an auto-regressive model with errors that includes exogenous variables. Regressionmodelswith time series errors describe the behavior of a series byaccountingfor lineareffectsofexogenousvariables.However, theerrorsarenotconsideredwhite noisebuta timeseries. This typeofmodel isdescribed inEquation(1). yt= p ∑ i=1 ϕi·et−i+Xt·θ+εt (1) where, theoutputyt is expressedasa linearcombinationofpreviousknownerrors, et-i, exogenous variablesXtandarandomshock, εt. Thecoefficientsϕiandvectorθarecalculatedfromthetraining databyamaximumlikelihoodmethod. Theparameterpexpresses thenumberof lagsof theerror that are includedin themodel. 2.1.2.NeuralNetwork TheNeuralNetworkmodel uses a non-linear auto-regressive systemwith exogenous input. mathematicallyexpressed inEquation(2): yt= f ( yt−1,, . . . ,yt−ny,ut−1,, . . . ,ut−nu ) (2) where, theoutputvalueyt isanon-linearfunctionofnypreviousoutputsandnu inputs. Thisnon-linear function is, inourcase,a feedforwardneuralnetwork. Furtherdescriptionof thismodelcanbefound in [39]. Figure 1 showsavisualizationof this typeofnetworksworkingonline. Thefigure shows a feedforward neural networkwith 119 exogenous inputs and a feedback of 14 previous values, 10neurons in thehiddenlayerand1output. Therandomnatureof the trainingprocessof theNARXsystemsrequirescertainredundancyto estabilize theoutput. This isachievedbyusinganumberNNinparallel.Also, theabilityof theNNto capturenon-linearbehaviordependsonthesizeof thehiddenlayer. Bothof theseparametersaffect thecomputationalburden imposedon thesystem,which isoneof theconditionsunderwhich the modelsare tested. Figure1.Schematicviewof theNARXsystemasshownonaMatlabMathworksvisualization. 2.2. ParametersandForecastingConditions Theforecastingenginesdescribedabovehavebeentestedwithdifferentconfigurationparameters andexternalconditions todeterminehowtheyadapt todifferentsituations. Externalconditionsare historical loadavailability, temperature locationsavailabilityandresponse timeliness,which is related tocomputationalburden.Configurationparametersare temperature treatment, frequencyof training andnumberofauto-regressive lags. 142
back to the  book Short-Term Load Forecasting by Artificial Intelligent Technologies"
Short-Term Load Forecasting by Artificial Intelligent Technologies
Title
Short-Term Load Forecasting by Artificial Intelligent Technologies
Authors
Wei-Chiang Hong
Ming-Wei Li
Guo-Feng Fan
Editor
MDPI
Location
Basel
Date
2019
Language
English
License
CC BY 4.0
ISBN
978-3-03897-583-0
Size
17.0 x 24.4 cm
Pages
448
Keywords
Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
Category
Informatik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Short-Term Load Forecasting by Artificial Intelligent Technologies