Page - 143 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 143 -
Text of the Page - 143 -
Energies2018,11, 2080
2.2.1.HistoricalLoadAvailability
Themost important inputofa load-forecastingmodel is itspastbehavior. Apersistentmodel
that only takes into accountpreviousvaluesmayprovide, in some cases, a valid baseline to start
developingamorecomplexone.However, inmanysituations,andespecially in industryapplications,
theavailabilityofsuchhistoricaldata isnotasdeepasdesiredandit is restricteddueto thequantity
or thequalityof thestoreddata. Insomecases, thedataacquisitionsystemhasnotbeenrunning long
enough,orachange in itsconfigurationmaycauseolddata tobeobsolete.
The question of howold thedata thatweuse in our forecasting systemshould be is a valid
one. The inclusionofdata fromtoofarbackmaycause themodel to learnobsoletebehavior thathas
changedover theyearsandthat isnotcurrentlyaccurate: the incrementofairconditioningsystems
mayincrease thesensitivityof loadto temperature increasewhile theuseofmoreefficient lighting
maydecrease the load inafter-sunsethours. On theotherhand, there are certainphenomena like
extremetemperaturesorspecialdays thatdonothappenfor longperiodsof timeand, therefore, if the
database isnotdeepenough, itmaynothaveenoughexamples toshapethis typeofbehavior.
Ourresearchproposesusingdata fromthe last3,5and7years to trainbothmodels. Thegoalof
theseexperiments is todeterminewhichoneof themrequiresadeeperdatabase,orwhichonecan
benefit themost fromsuchdataavailability. Thedatawillbebrokendownintoseparate typesofdays
inorder todeterminewhichcategory isaffectedbythiscondition.
2.2.2. TemperatureLocationsAvailability
Temperature is themost importantexogenous factor for loadforecastingof regulardaysasboth
extremesof the temperaturerange increaseelectricityconsumption. Loadforecastingofsmallareas in
whichtemperature ishomogenousmayrequireonlyoneseriesof temperaturedata to learn thearea’s
behaviors thatarerelatedto temperature.However, if theregion is largerandtheweatherpresents
highervariability, it isnecessary todeterminewhich locationsprovidearelevant temperatureseries
thatcouldmodel the localarea’sbehaviorrelatedtoweather.Needless tosay,notall localareaswillbe
equallyaffectedbytemperatureandtherelevanceofeachareawithin theoverall loadfor theregion
willvarydependingonthe lowerorhigherelectricitycapacityofeacharea. Theelectricitycapacity
normallyrelates to thearea’sgrossproduct.
Inourcase,Spain isa largecountrywithawideweatherdiversity. Inaddition, thepopulation
distribution also causes ahighvariability of power consumptionamongareas. According to this,
themodel used at REE includes data fromfive locations that represent the fiveweather regions:
North-Atlantic (Bilbao),Mediterranean(Barcelona),Upper-Center (Zaragoza),Lower-Center (Madrid)
andSouth (Sevilla). These cities, shown inFigure 2 are themostpowerdemandingareas in each
weatherregion.
%$5&(/21$
0$'5,' =$5$*2=$
%,/%$2
6(9,//$
Figure2.Locationof thefivetemperatureseriesanddistributionof theweatherregions inSpain.
143
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik