Page - 146 - in Short-Term Load Forecasting by Artificial Intelligent Technologies
Image of the Page - 146 -
Text of the Page - 146 -
Energies2018,11, 2080
2.2.6.NumberofAuto-RegressiveLags
As itwasaforementioned,bothmodelspresentanauto-regressivecomponent. Thispartof the
model introduces thepreviousvaluesasa feedback inorder toenable to forecastingengine toreduce
errorsduetounaccountedfactors thatarepersistent in time.
Thekeyparameter toconfigure thisaspectof themodels is thenumberof lags,whichrepresents
howmanypreviousvaluesare fedback into themodel. Intuitively, themost recentvaluescarry the
most informationwhile the further back in time thatwe reach, the less relevant thedata become.
Inaddition, theARmodelusesa linear relation to capture the laggedresultswhile theNNmodel
allowsnon-linearity. Therefore, it ispossible thatonemodel isable touseadifferentamountof lags
thantheother.
Theauto-regressiveorderofeachmodelhasbeentestedfrom0to25. The loadseries ishighly
self-correlatedonlagsmultipleofsevenduetotheweeklypatterns,asit isshowninFigure4. Therefore,
lagsaround7,14and21wereexplored.Auto-correlationmeasures thecorrelationbetweenyt andyt+k,
anditscalculation isdescribed in [43].
0 5 10 15 20 25
-0.2
0
0.2
0.4
0.6
0.8
Lag
Sample Autocorrelation Function
Figure4.SampleautocorrelationfunctionforNational loadat18h.
It isworthmentioning that the objective of this paper is not toprovide or suggest analytical
or statisticalmethods to determine the order of auto-regressivemodels like [44,45] but to offer a
comparisonbetweenARandNNbasedmodels tounderstandtheeffect that theauto-regressiveorder
hasonthe forecastingaccuracy.
2.3. TypesofDays
Eachof theproposedparametersandconditionsunderwhichthe forecastingmodelsare tested
willcausetheforecastingaccuracytochangeoverthewholeone-yearsimulatingperiod. Thisvariation,
however,mayaffect sometypeofdaysmore thanotherand, therefore, itmayseemirrelevantwhenit
isaveragedover thewhole testingperiod. Inorder toavoid thiserror, it is important todissect the
results andanalyze theaccuracyof themodelsondifferent categoriesofdays todeterminewhich
conditionsaffectwhichtypeofdaysandhowtheydoit.
There are two aspects to classify the days: social character and temperature. The first one
considersdaysasspecial if theyareaholiday,are inbetweentwoholidaysorweekend,orareaffected
byDaylightSavingTimeor thevacationalperiodsatChristmasorEaster.Amoredetaileddescription
of thedaysconsideredspecial is foundinSection3.
Temperature isusedtoclassifydaysashotandcold. Foreachcategory, the top20andbottom
20days fromthe temperatureseriesareconsidered. Ifoneof the20days isalsoaspecialday, then it is
146
Short-Term Load Forecasting by Artificial Intelligent Technologies
- Title
- Short-Term Load Forecasting by Artificial Intelligent Technologies
- Authors
- Wei-Chiang Hong
- Ming-Wei Li
- Guo-Feng Fan
- Editor
- MDPI
- Location
- Basel
- Date
- 2019
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-3-03897-583-0
- Size
- 17.0 x 24.4 cm
- Pages
- 448
- Keywords
- Scheduling Problems in Logistics, Transport, Timetabling, Sports, Healthcare, Engineering, Energy Management
- Category
- Informatik