Web-Books
im Austria-Forum
Austria-Forum
Web-Books
International
Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Seite - 27 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 27 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“

Bild der Seite - 27 -

Bild der Seite - 27 - in Proceedings - OAGM & ARW Joint Workshop 2016 on

Text der Seite - 27 -

Semantic Labeling Enhancedby aSpatialContext Prior DanielSteininger,Csaba Beleznai Austrian InstituteofTechnology,Austria Daniel.Steininger.fl@ait.ac.at Csaba.Beleznai@ait.ac.at Abstract Our observed visual world exhibits a structure, which implies that scene objects and their surround- ings are not randomly arranged relative to each other but typically appear in a spatially correlated manner. Thus, the structural correlation can be exploited to make the visual recognition task pre- dictable to a certain extent. Modeling relations between categories is, however, non-trivial, since categories are often represented at different granularities across distinct datasets. In this paper, we merge fine-level semantic descriptions into basic semantic classes which allows the generation of spatial contextual priors from a wide range of datasets. In this way, a contextual model is derived with the objective to employ the learned contextual prior to enhance visual recognition via improved semantic labeling. Theprior iscapturedexplicitlybycomputingoccurrenceandco-occurrenceprob- abilitiesofspecificsemanticclassesandclasspairs fromadiversesetofannotateddatasets. Weshow improved semantic labeling accuracy by incorporating the contextual priors into the label inference process,which is evaluated anddiscussedon theDaimlerUrban Segmentation2014dataset. 1. Introduction Semantic segmentation of digital images links two core computer vision challenges: visual object recognitionandsegmentation. In recentyears, great improvement inaccuracies toboth task domains has been demonstrated, mainly due to a transition from learned hand-crafted representations towards representations distributed within hierarchies and embedded into compositional schemes, enabling a richgeneralization for a largenumber of object classes. Figure1. SemanticLabeling enhancedbya SpatialContextPriorand ConditionalRandom Field. 27
zurück zum  Buch Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“"
Proceedings OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Titel
Proceedings
Untertitel
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Autoren
Peter M. Roth
Kurt Niel
Verlag
Verlag der Technischen Universität Graz
Ort
Wels
Datum
2017
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-527-0
Abmessungen
21.0 x 29.7 cm
Seiten
248
Schlagwörter
Tagungsband
Kategorien
International
Tagungsbände

Inhaltsverzeichnis

  1. Learning / Recognition 24
  2. Signal & Image Processing / Filters 43
  3. Geometry / Sensor Fusion 45
  4. Tracking / Detection 85
  5. Vision for Robotics I 95
  6. Vision for Robotics II 127
  7. Poster OAGM & ARW 167
  8. Task Planning 191
  9. Robotic Arm 207
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Proceedings