Seite - 34 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Bild der Seite - 34 -
Text der Seite - 34 -
[5] Michelle R. Greene, Christopher Baldassano, Andre Esteva, Diane M. Beck, and Li Fei-Fei.
Visual scenes are categorized by function. Journal of Experimental Psychology: General,
145(1):82, 2016.
[6] Bharath Hariharan, Pablo Arbela´ez, Ross Girshick, and Jitendra Malik. Hypercolumns for ob-
ject segmentation and fine-grained localization. In Proceedings of the IEEE Conference on
Computer VisionandPatternRecognition, pages447–456,2015.
[7] PeterKontschieder,S.RotaBulo`,HorstBischof,andMarcelloPelillo. Structuredclass-labels in
random forests for semantic image labelling. In Proceedings of IEEE International Conference
onComputerVision, pages2190–2197,2011.
[8] PhilippKra¨henbu¨hlandVladlenKoltun. Efficient inference in fullyconnectedCRFswithgaus-
sianedge potentials. In Advances inNeural Information ProcessingSystems, 2011.
[9] Ming-Yu Liu, Shuoxin Lin, Srikumar Ramalingam, and Oncel Tuzel. Layered interpretation of
streetviewimages. InProceedings ofRobotics: ScienceandSystems,Rome, Italy, July 2015.
[10] George A Miller. Wordnet: a lexical database for english. Communications of the ACM,
38(11):39–41,1995.
[11] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler,
Raquel Urtasun, and Alan Yuille. The role of context for object detection and semantic seg-
mentation in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014.
[12] AudeOlivaandAntonioTorralba. Theroleofcontext inobject recognition. Trends inCognitive
Sciences, 11(12):520–527, 2007.
[13] George Papandreou, Liang-Chieh Chen, Kevin P. Murphy, and Alan L. Yuille. Weakly-and
semi-supervised learning of a deep convolutional network for semantic image segmentation.
In Proceedings of the IEEE International Conference on Computer Vision, pages 1742–1750,
2015.
[14] TimoScharwa¨chter,MarkusEnzweiler,UweFranke,andStefanRoth. Stixmantics: Amedium-
level model for real-time semantic scene understanding. In Proceedings of the European Con-
ferenceonComputer Vision, pages 533–548.Springer, 2014.
[15] Abhishek Sharma, Oncel Tuzel, and David W. Jacobs. Deep hierarchical parsing for semantic
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 530–538, 2015.
[16] Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. Textonboost for image
understanding: Multi-class object recognition and segmentation by jointly modeling texture,
layout, andcontext. International JournalofComputerVision, 81(1):2–23,2009.
[17] Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. In Proceedings of the
IEEEConferenceonComputer VisionandPatternRecognition, pages1521–1528,2011.
[18] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su,
Dalong Du, Chang Huang, and Philip H.S. Torr. Conditional random fields as recurrent neural
networks. In Proceedings of the IEEE International Conference on Computer Vision, pages
1529–1537,2015.
34
Proceedings
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Titel
- Proceedings
- Untertitel
- OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
- Autoren
- Peter M. Roth
- Kurt Niel
- Verlag
- Verlag der Technischen Universität Graz
- Ort
- Wels
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY 4.0
- ISBN
- 978-3-85125-527-0
- Abmessungen
- 21.0 x 29.7 cm
- Seiten
- 248
- Schlagwörter
- Tagungsband
- Kategorien
- International
- Tagungsbände