Web-Books
im Austria-Forum
Austria-Forum
Web-Books
International
Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Seite - 48 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 48 - in Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“

Bild der Seite - 48 -

Bild der Seite - 48 - in Proceedings - OAGM & ARW Joint Workshop 2016 on

Text der Seite - 48 -

mode #1 mode #2 mode #3 +2 √ λi mean −2 √ λi Figure2. First threemodesofvariationof theLVSSM. model space to image space the following equation is used: y =R((x¯+Φb)s+T). Both shape parameter vector b and the parameters for pose p= {R,s,T}, i.e. rotation matrixR, scale factor s and translation vectorT, have to be found so that the registration error is minimized. Unlike [4] and [1],wederiveR fromEulerangles to reduce thedimensionalityof the registrationproblem. Orienta- tion in 3-D space is thus described using 3 angles, i.e.Rα,β,γ, instead of a 3×3 matrix. To generate statistically plausible shapes [2], b is constrained by±2√λi. In contrast to [4] and [1], we exploit the training data to derive constraints for p. The training instances in model space are transformed to image space and the range of the pose vector components is analyzed. Note that this can be re- gardedasadditional a-priori information. Tominimizeourcost function, theNelder-Meadalgorithm is applied. Experiments showed that optimizing pose and shape sequentially is more efficient than optimizingboth simultaneously. 3.3.1. CostFunction Our cost function depends on the shape and the pose parameter vector and incorporates both contour and densitometric information derived from the given projectionsPi and the simulated projections P ′i(b,p): (b,p) = ∑nP i=1(ωC C(Pi,P ′ i(b,p))+ωD D(Pi,P ′ i(b,p))). Contour-related error C is ob- tainedbyequiangularsamplingof thegivenandthesimulatedcontourandbycalculating theSSDfor the sampled points. As density-related error D, the sum of squared difference metric is used. Total error is definedas theweightedsum of C and D over allnP = 2projections. 48
zurück zum  Buch Proceedings - OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“"
Proceedings OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Titel
Proceedings
Untertitel
OAGM & ARW Joint Workshop 2016 on "Computer Vision and Robotics“
Autoren
Peter M. Roth
Kurt Niel
Verlag
Verlag der Technischen Universität Graz
Ort
Wels
Datum
2017
Sprache
englisch
Lizenz
CC BY 4.0
ISBN
978-3-85125-527-0
Abmessungen
21.0 x 29.7 cm
Seiten
248
Schlagwörter
Tagungsband
Kategorien
International
Tagungsbände

Inhaltsverzeichnis

  1. Learning / Recognition 24
  2. Signal & Image Processing / Filters 43
  3. Geometry / Sensor Fusion 45
  4. Tracking / Detection 85
  5. Vision for Robotics I 95
  6. Vision for Robotics II 127
  7. Poster OAGM & ARW 167
  8. Task Planning 191
  9. Robotic Arm 207
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Proceedings